Cross-Phenotype Association Analysis Using Summary Statistics from GWAS

  • Xiaoyin Li
  • Xiaofeng Zhu
Part of the Methods in Molecular Biology book series (MIMB, volume 1666)


For over a decade, genome-wide association studies (GWAS) have been a major tool for detecting genetic variants underlying complex traits. Recent studies have demonstrated that the same variant or gene can be associated with multiple traits, and such associations are termed cross-phenotype (CP) associations. CP association analysis can improve statistical power by searching for variants that contribute to multiple traits, which is often relevant to pleiotropy. In this chapter, we discuss existing statistical methods for analyzing association between a single marker and multivariate phenotypes, we introduce a general approach, CPASSOC, to detect the CP associations, and explain how to conduct the analysis in practice.

Key words

Genome-wide association studies Cross-phenotype association Meta-analysis Multivariate phenotypes Pleiotropy Summary statistics 



This work was supported by a grant from National Heart Genome Research Institute (HG003054).


  1. 1.
    Welter D, MacArthur J, Morales J et al (2014) The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006CrossRefPubMedGoogle Scholar
  2. 2.
    Wagner GP, Zhang J (2011) The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat Rev Genet 12:204–213CrossRefPubMedGoogle Scholar
  3. 3.
    Ghoussaini M, Song HL, Koessler T et al (2008) Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst 100:962–966CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gudmundsson J, Sulem P, Manolescu A et al (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39:631–637CrossRefPubMedGoogle Scholar
  5. 5.
    Tomlinson I, Webb E, Carvajal-Carmona L et al (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39:984–988CrossRefPubMedGoogle Scholar
  6. 6.
    Turnbull C, Ahmed S, Morrison J et al (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42:504–U547CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grisanzio C, Freedman ML (2010) Chromosome 8q24-associated cancers and MYC. Genes Cancer 1:555–559CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Begovich AB, Carlton VEH, Honigberg LA et al (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75:330–337CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bottini N, Musumeci L, Alonso A et al (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36:337–338CrossRefPubMedGoogle Scholar
  10. 10.
    Kyogoku C, Langefeld CD, Ortmann WA et al (2004) Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Arthritis Rheum 50:S258–S258CrossRefGoogle Scholar
  11. 11.
    Smyth D, Cooper JD, Collins JE et al (2004) Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 53:3020–3023CrossRefPubMedGoogle Scholar
  12. 12.
    Siminovitch KA (2004) PTPN22 and autoimmune disease. Nat Genet 36:1248–1249CrossRefPubMedGoogle Scholar
  13. 13.
    Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW (2013) Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 14:483–495CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42:121–130CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou X, Stephens M (2014) Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods 11:407CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ott J, Rabinowitz D (1999) A principal-components approach based on heritability for combining phenotype information. Hum Hered 49:106–111CrossRefPubMedGoogle Scholar
  17. 17.
    Klei L, Luca D, Devlin B, Roeder K (2008) Pleiotropy and principal components of heritability combine to increase power for association analysis. Genet Epidemiol 32:9–19CrossRefPubMedGoogle Scholar
  18. 18.
    Ferreira MA, Purcell SM (2009) A multivariate test of association. Bioinformatics 25:132–133CrossRefPubMedGoogle Scholar
  19. 19.
    Yang JJ, Li J, Williams LK, Buu A (2016) An efficient genome-wide association test for multivariate phenotypes based on the Fisher combination function. BMC Bioinformatics 17:19CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cotsapas C, Voight BF, Rossin E et al (2011) Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet 7:e1002254CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kavvoura FK, Ioannidis JPA (2008) Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls. Hum Genet 123:1–14CrossRefPubMedGoogle Scholar
  22. 22.
    Bhattacharjee S, Rajaraman P, Jacobs KB et al (2012) A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am J Hum Genet 90:821–835CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Xu X, Tian L, Wei LJ (2003) Combining dependent tests for linkage or association across multiple phenotypic traits. Biostatistics 4:223–229CrossRefPubMedGoogle Scholar
  24. 24.
    Yang Q, Wu H, Guo CY, Fox CS (2010) Analyze multivariate phenotypes in genetic association studies by combining univariate association tests. Genet Epidemiol 34:444–454CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhu X, Feng T, Tayo BO et al (2015) Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am J Hum Genet 96:21–36CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Park H, Li XY, Song YE, He KRY, Zhu XF (2016) Multivariate analysis of anthropometric traits using summary statistics of genome-wide association studies from GIANT consortium. PLoS One 11:e0163912CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ehret GB, Munroe PB, Rice KM et al (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–109CrossRefPubMedGoogle Scholar
  28. 28.
    Franceschini N, Fox E, Zhang Z et al (2013) Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am J Hum Genet 93:545–554CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    O'Reilly PF, Hoggart CJ, Pomyen Y et al (2012) MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS One 7:e34861CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang HP, Liu CT, Wang XQ (2010) An association test for multiple traits based on the generalized Kendall’s tau. J Am Stat Assoc 105:473–481CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lange C, Silverman SK, Xu X, Weiss ST, Laird NM (2003) A multivariate family-based association test using generalized estimating equations: FBAT-GEE. Biostatistics 4:195–206CrossRefPubMedGoogle Scholar
  32. 32.
    Aschard H, Vilhjalmsson BJ, Greliche N, Morange PE, Tregouet DA, Kraft P (2014) Maximizing the power of principal-component analysis of correlated phenotypes in genome-wide association studies. Am J Hum Genet 94:662–676CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Panagiotou OA, Willer CJ, Hirschhorn JN, Ioannidis JP (2013) The power of meta-analysis in genome-wide association studies. Annu Rev Genomics Hum Genet 14:441–465CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Han B, Eskin E (2011) Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88:586–598CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    O’Brien PC (1984) Procedures for comparing samples with multiple endpoints. Biometrics 40:1079–1087CrossRefPubMedGoogle Scholar
  36. 36.
    Wain LV, Verwoert GC, O'Reilly PF et al (2011) Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 43:1005–1011CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Heald AH, Siddals KW, Fraser W et al (2002) Low circulating levels of insulin-like growth factor binding protein-1 (IGFBP-1) are closely associated with the presence of macrovascular disease and hypertension in type 2 diabetes. Diabetes 51:2629–2636CrossRefPubMedGoogle Scholar
  38. 38.
    Rajwani A, Ezzat V, Smith J et al (2012) Increasing circulating IGFBP1 levels improves insulin sensitivity, promotes nitric oxide production, lowers blood pressure, and protects against atherosclerosis. Diabetes 61:915–924CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ganesh SK, Chasman DI, Larson MG et al (2014) Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations. Am J Hum Genet 95:49–65CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Warren HR, Evangelou E, Cabrera CP et al (2017) Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. doi: 10.1038/ng.3768
  41. 41.
    Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190–2191CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Population and Quantitative Health SciencesSchool of Medicine, Case Western Reserve UniversityClevelandUSA

Personalised recommendations