Abstract
Genetic linkage analysis aims to detect chromosomal regions containing genetic variants that influence risk of specific inherited diseases. The presence of linkage is indicated when a disease or trait cosegregates through the families with genetic markers at a particular region of the genome. Two main types of genetic linkage analysis are in common use, namely model-based linkage analysis and model-free linkage analysis. In this chapter, we focus solely on the latter type and specifically on binary traits or phenotypes, such as the presence or absence of a specific disease. Model-free linkage analysis is based on allele-sharing, where patterns of genetic similarity among affected relatives are compared to chance expectations. Because the model-free methods do not require the specification of the inheritance parameters of a genetic model, they are preferred by many researchers at early stages in the study of a complex disease. We introduce the history of model-free linkage analysis in Subheading 1. Table 1 describes a standard model-free linkage analysis workflow. We describe three popular model-free linkage analysis methods, the nonparametric linkage (NPL) statistic, the affected sib-pair (ASP) likelihood ratio test, and a likelihood approach for pedigrees. The theory behind each linkage test is described in this section together with a simple example of the relevant calculations. Table 4 provides a summary of popular genetic analysis software packages that implement model-free linkage models. In Subheading 2, we work through the methods on a rich example providing sample software code and output. Subheading 3 contains notes with additional details on various topics that may need further consideration during analysis.
Similar content being viewed by others
References
Ott J (1996) Complex traits on the map. Nature 379:772–773
Elston RC (2000) Introduction and overview. Statistical methods in genetic epidemiology. Stat Methods Med Res 9:527–541
Fishman PM, Suarez B, Hodge SE, Reich T (1978) A robust method for the detection of linkage in familial disease. Am J Hum Genet 30:308–321
Suarez BK (1978) The affected sib pair IBD distribution for HLA-linked disease susceptibility genes. Tissue Antigens 12:87–93
Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363
Lander ES, Green P (1987) Construction of multilocus genetic maps in humans. Proc Natl Acad Sci 84:2363–2367
Gudbjartsson DF, Jonasson K, Frigge ML, Kong A (2000) Allegro, a new computer program for multipoint linkage analysis. Nat Genet 25:12–13
Gudbjartsson DF, Thorvaldsson T, Kong A, Gunnarsson G, Ingolfsdottir A (2005) Allegro version 2. Nat Genet 37:1015–1016
Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101
Risch N (1990a) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46(2):222–228
Risch N (1990b) Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 46(2):229–241
S.A.G.E. 6.4 (2016) Statistical Analysis for Genetic Epidemiology http://darwin.cwru.edu
Whittemore AS, Halpern J (1994) A class of tests of linkage using affected pedigree members. Biometrics 50:118–127
Kong A, Cox NJ (1997) Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 61:1179–1188
Kruglyak L, Lander ES (1998) Faster multipoint linkage analysis using Fourier transforms. J Comput Biol 5:1–7
Markianos K, Daly MJ, Kruglyak L (2001) Efficient multipoint linkage analysis through reduction of inheritance space. Am J Hum Genet 68:963–977
Browning BL, Browning SR (2013) Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194(2):459–471
Suarez BK, Van Eerdewegh P (1984) A comparison of three affected-sib-pair scoring methods to detect HLA-linked disease susceptibility genes. Am J Med Genet 18:135–146
Blackwelder WC, Elston RC (1985) A comparison of sib-pair linkage tests for disease susceptibility loci. Genet Epidemiol 2(1):85–97
Tierney C, McKnight B (1993) Power of affected sibling method tests for linkage. Hum Hered 43(5):276–287
Schaid DJ, Nick TG (1990) Sib-pair linkage tests for disease susceptibility loci: common tests vs. the asymptotically most powerful test. Genet Epidemiol 7(5):359–370
Whittemore AS (1996) Genome scanning for linkage: an overview. Am J Hum Genet 59:704–716
Kruglyak L, Lander ES (1995) Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet 57:439–454
Holmans P (1993) Asymptotic properties of affected-sib-pair linkage analysis. Am J Hum Genet 52(2):362–374
Terwilliger JD, Ott J (1994) Handbook of Human Genetic Linkage. The Johns Hopkins University Press, Baltimore
Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102
Kong X, Murphy K, Raj T, He C, White PS, Matise TC. (2004) A combined linkage-physical map of the human genome. Am J Hum Genet 75 (6): 1143–1148. (http://compgen.rutgers.edu/mapinterpolator)
The Autism Genome Project Consortium, Szatmati et al. (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39(3):319–328
Mirea L (1999) Detection of heterogeneity in allele sharing of affected relatives. M.Sc. thesis, University of Toronto
Mirea L, Briollais L, Bull S (2004) Tests for covariate-associated heterogeneity in IBD allele sharing of affected relatives. Genet Epidemiol 26(1):44–60
Kruglyak L, Lander ES (1995) High-resolution genetic mapping of complex traits. Am J Hum Genet 56(5):1212–1223
Gershon ES, Goldin LR (1986) Clinical methods in psychiatric genetics, I: Robustness of genetic marker investigative strategies. Acta Psychiatr Scand 74:113–118
Zouk H, McGirr A, Lebel V, Benkelfat C, Rouleau G, Turecki G (2007) The effect of genetic variation of the serotonin 1B receptor gene on impulsive aggressive behavior and suicide. Am J Med Genet B Neuropsychiatr Genet 144B(8):996–1002
Evans DM, Cardon LR (2004) Guidelines for genotyping in genome wide linkage studies: single-nucleotide-polymorphism maps versus microsatellite maps. Am J Hum Genet 75:687–692
Nicolae DL, Kong A (2004) Measuring the relative information in allele-sharing linkage studies. Biometrics 60:368–375
McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48:1279–1283
Goring HH, Terwilliger JD (2000) Linkage analysis in the presence of errors I: complex-valued recombination fractions and complex phenotypes. Am J Hum Genet 66(3):1095–1106
Margaritte-Jeannin P, Babron MC, Génin E, Eichenbaum-Voline S, Clerget-Darpoux F (1997) Heterogeneity of marker allele frequencies hinders interpretation of linkage analysis: illustration on chromosome 18 markers. Genet Epidemiol 14:669–674
Williamson JA, Amos CI (1995) Guess LOD approach: sufficient conditions for robustness. Genet Epidemiol 12(2):163–176
McPeek MS (1999) Optimal allele-sharing statistics for genetic mapping using affected relatives. Genet Epidemiol 16(3):225–249
Margaritte-Jeannin P, Babron MC, Clerget-Darpoux F (2007) On the choice of linkage statistics. BMC Proc 1(Suppl 1):S102
Basu S, Stephens M, Pankow JS, Thompson EA (2010) A likelihood-based trait-model-free approach for linkage detection of a binary trait. Biometrics 66:201–213. (http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml)
Risch N, Zhang H (1995) Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 268(5217):1584–1589
Rogus JJ, Krolewski AS (1996) Using discordant sib pairs to map loci for qualitative traits with high sibling recurrence risk. Am J Hum Genet 59(6):1376–1381
Sham PC, Zhao JH, Curtis D (1997) Optimal weighting scheme for affected sib-pair analysis of sibship data. Ann Hum Genet 61:61–69
Greenwood CMT, Bull SB (1999) Down-weighting of multiple affected sib pairs leads to biased likelihood ratio tests under no linkage. Am J Hum Genet 64:1248–1252
Greenwood CMT, Bull SB (1997) Incorporation of covariates into genome scanning using sib-pair analysis in bipolar affective disorder. Genet Epidemiol 14(6):635–640
Greenwood CMT, Bull SB (1999) Analysis of affected sib pairs, with covariates-–with and without constraints. Am J Hum Genet 64(3):871–885
Bull SB, Greenwood CMT, Mirea L, Morgan K (2002) Regression models for allele sharing: analysis of accumulating data in affected sib pair studies. Stat Med 21:431–444
Olson JM (1999) A general conditional-logistic model for affected-relative-pair linkage studies. Am J Hum Genet 65:1760–1769
Goddard KA, Witte JS, Suarez BK, Catalona WJ, Olson JM (2001) Model-free linkage analysis with covariates confirms linkage of prostate cancer to chromosomes 1 and 4. Am J Hum Genet 68:1197–1206
Xu W, Taylor C, Veenstra J, Bull SB, Corey M, Greenwood CM (2005) Recursive partitioning models for linkage in COGA data. BMC Genet 6(Suppl 1):S38
Xu W, Schulze TG, DePaulo JR, Bull SB, McMahon FJ, Greenwood CM (2006) A tree-based model for allele-sharing-based linkage analysis in human complex diseases. Genet Epidemiol 30:155–169
Nicolae DL (1999) Allele sharing models in gene mapping: a likelihood approach. Ph.D. thesis, Dept. Statistics, Univ. Chicago
Whittemore AS, Halpern J (2006) Nonparametric linkage analysis using person-specific covariates. Genet Epidemiol 30(5):369–379
Strauch K, Fimmers R, Kurz T, Deichmann KA, Wienker TF, Baur MP (2000) Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. Am J Hum Genet 66:1945–1957
Sinsheimer JS, Blangero J, Lange K (2000) Gamete-competition models. Am J Hum Genet 66(3):1168–1172
Greenwood CMT, Morgan K (2000) The impact of transmission ratio distortion on allele sharing in affected sibling pairs. Am J Hum Genet 66:2001–2004
Huang Q, Shete S, Amos CI (2004) Ignoring linkage disequilibrium among tightly linked markers induces false-positive evidence of linkage for affected sib pair analysis. Am J Hum Genet 75(6):1106–1112
Schaid DJ, McDonnell SK, Wang L, Cunningham JM, Thibodeau SN (2002) Caution on pedigree haplotype inference with software that assumes linkage equilibrium. Am J Hum Genet 71(4):992–995
Cho K, Dupuis J (2009) Handling linkage disequilibrium in qualitative trait linkage analysis using dense SNPs: a two-step strategy. BMC Genet 10:44
Abecasis GR, Wigginton JE (2005) Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet 77:754–767
Stewart WC, Peljto AL, Greenberg DA (2010) Multiple subsampling of dense SNP data localizes disease genes with increased precision. Human Hered 69:152–159. (software http://www.mathmed.org/wclstewart/HOME/SOFT/soft.html)
Sinha R, Igo RP Jr, Saini SK, Elston RC, Luo Y (2009) Bayesian intervals for linkage locations. Genet Epidemiol 33(7):604–616
Lander ES, Kruglyak L (1995) Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet 11:241
Acknowledgments
We acknowledge the support of research grants from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Network of Centres of Excellence in Mathematics (MITACS Inc.).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media LLC
About this protocol
Cite this protocol
Xu, W., Ma, J., Greenwood, C.M.T., Paterson, A.D., Bull, S.B. (2017). Model-Free Linkage Analysis of a Binary Trait. In: Elston, R. (eds) Statistical Human Genetics. Methods in Molecular Biology, vol 1666. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7274-6_17
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7274-6_17
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7273-9
Online ISBN: 978-1-4939-7274-6
eBook Packages: Springer Protocols