Advertisement

Model-Free Linkage Analysis of a Binary Trait

  • Wei Xu
  • Jin Ma
  • Celia M. T. Greenwood
  • Andrew D. Paterson
  • Shelley B. Bull
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1666)

Abstract

Genetic linkage analysis aims to detect chromosomal regions containing genetic variants that influence risk of specific inherited diseases. The presence of linkage is indicated when a disease or trait cosegregates through the families with genetic markers at a particular region of the genome. Two main types of genetic linkage analysis are in common use, namely model-based linkage analysis and model-free linkage analysis. In this chapter, we focus solely on the latter type and specifically on binary traits or phenotypes, such as the presence or absence of a specific disease. Model-free linkage analysis is based on allele-sharing, where patterns of genetic similarity among affected relatives are compared to chance expectations. Because the model-free methods do not require the specification of the inheritance parameters of a genetic model, they are preferred by many researchers at early stages in the study of a complex disease. We introduce the history of model-free linkage analysis in Subheading 1. Table 1 describes a standard model-free linkage analysis workflow. We describe three popular model-free linkage analysis methods, the nonparametric linkage (NPL) statistic, the affected sib-pair (ASP) likelihood ratio test, and a likelihood approach for pedigrees. The theory behind each linkage test is described in this section together with a simple example of the relevant calculations. Table 4 provides a summary of popular genetic analysis software packages that implement model-free linkage models. In Subheading 2, we work through the methods on a rich example providing sample software code and output. Subheading 3 contains notes with additional details on various topics that may need further consideration during analysis.

Key words

Genetic linkage analysis Nonparametric linkage (NPL) score Identity by descent (IBD) sharing Affected relative pairs (ARP) Affection status Likelihood ratio-based linkage model Pedigree structure Kong and Cox model Genetic heterogeneity GENEHUNTER MERLIN S.A.G.E. 

Notes

Acknowledgments

We acknowledge the support of research grants from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Network of Centres of Excellence in Mathematics (MITACS Inc.).

References

  1. 1.
    Ott J (1996) Complex traits on the map. Nature 379:772–773CrossRefPubMedGoogle Scholar
  2. 2.
    Elston RC (2000) Introduction and overview. Statistical methods in genetic epidemiology. Stat Methods Med Res 9:527–541CrossRefPubMedGoogle Scholar
  3. 3.
    Fishman PM, Suarez B, Hodge SE, Reich T (1978) A robust method for the detection of linkage in familial disease. Am J Hum Genet 30:308–321PubMedPubMedCentralGoogle Scholar
  4. 4.
    Suarez BK (1978) The affected sib pair IBD distribution for HLA-linked disease susceptibility genes. Tissue Antigens 12:87–93CrossRefPubMedGoogle Scholar
  5. 5.
    Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lander ES, Green P (1987) Construction of multilocus genetic maps in humans. Proc Natl Acad Sci 84:2363–2367CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gudbjartsson DF, Jonasson K, Frigge ML, Kong A (2000) Allegro, a new computer program for multipoint linkage analysis. Nat Genet 25:12–13CrossRefPubMedGoogle Scholar
  8. 8.
    Gudbjartsson DF, Thorvaldsson T, Kong A, Gunnarsson G, Ingolfsdottir A (2005) Allegro version 2. Nat Genet 37:1015–1016CrossRefPubMedGoogle Scholar
  9. 9.
    Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101CrossRefPubMedGoogle Scholar
  10. 10.
    Risch N (1990a) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46(2):222–228PubMedPubMedCentralGoogle Scholar
  11. 11.
    Risch N (1990b) Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 46(2):229–241PubMedPubMedCentralGoogle Scholar
  12. 12.
    S.A.G.E. 6.4 (2016) Statistical Analysis for Genetic Epidemiology http://darwin.cwru.edu
  13. 13.
    Whittemore AS, Halpern J (1994) A class of tests of linkage using affected pedigree members. Biometrics 50:118–127CrossRefPubMedGoogle Scholar
  14. 14.
    Kong A, Cox NJ (1997) Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 61:1179–1188CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kruglyak L, Lander ES (1998) Faster multipoint linkage analysis using Fourier transforms. J Comput Biol 5:1–7CrossRefPubMedGoogle Scholar
  16. 16.
    Markianos K, Daly MJ, Kruglyak L (2001) Efficient multipoint linkage analysis through reduction of inheritance space. Am J Hum Genet 68:963–977CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Browning BL, Browning SR (2013) Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194(2):459–471CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Suarez BK, Van Eerdewegh P (1984) A comparison of three affected-sib-pair scoring methods to detect HLA-linked disease susceptibility genes. Am J Med Genet 18:135–146CrossRefPubMedGoogle Scholar
  19. 19.
    Blackwelder WC, Elston RC (1985) A comparison of sib-pair linkage tests for disease susceptibility loci. Genet Epidemiol 2(1):85–97CrossRefPubMedGoogle Scholar
  20. 20.
    Tierney C, McKnight B (1993) Power of affected sibling method tests for linkage. Hum Hered 43(5):276–287CrossRefPubMedGoogle Scholar
  21. 21.
    Schaid DJ, Nick TG (1990) Sib-pair linkage tests for disease susceptibility loci: common tests vs. the asymptotically most powerful test. Genet Epidemiol 7(5):359–370CrossRefPubMedGoogle Scholar
  22. 22.
    Whittemore AS (1996) Genome scanning for linkage: an overview. Am J Hum Genet 59:704–716PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kruglyak L, Lander ES (1995) Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet 57:439–454PubMedPubMedCentralGoogle Scholar
  24. 24.
    Holmans P (1993) Asymptotic properties of affected-sib-pair linkage analysis. Am J Hum Genet 52(2):362–374PubMedPubMedCentralGoogle Scholar
  25. 25.
    Terwilliger JD, Ott J (1994) Handbook of Human Genetic Linkage. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  26. 26.
    Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kong X, Murphy K, Raj T, He C, White PS, Matise TC. (2004) A combined linkage-physical map of the human genome. Am J Hum Genet 75 (6): 1143–1148. (http://compgen.rutgers.edu/mapinterpolator)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    The Autism Genome Project Consortium, Szatmati et al. (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39(3):319–328Google Scholar
  29. 29.
    Mirea L (1999) Detection of heterogeneity in allele sharing of affected relatives. M.Sc. thesis, University of TorontoGoogle Scholar
  30. 30.
    Mirea L, Briollais L, Bull S (2004) Tests for covariate-associated heterogeneity in IBD allele sharing of affected relatives. Genet Epidemiol 26(1):44–60CrossRefPubMedGoogle Scholar
  31. 31.
    Kruglyak L, Lander ES (1995) High-resolution genetic mapping of complex traits. Am J Hum Genet 56(5):1212–1223PubMedPubMedCentralGoogle Scholar
  32. 32.
    Gershon ES, Goldin LR (1986) Clinical methods in psychiatric genetics, I: Robustness of genetic marker investigative strategies. Acta Psychiatr Scand 74:113–118Google Scholar
  33. 33.
    Zouk H, McGirr A, Lebel V, Benkelfat C, Rouleau G, Turecki G (2007) The effect of genetic variation of the serotonin 1B receptor gene on impulsive aggressive behavior and suicide. Am J Med Genet B Neuropsychiatr Genet 144B(8):996–1002CrossRefPubMedGoogle Scholar
  34. 34.
    Evans DM, Cardon LR (2004) Guidelines for genotyping in genome wide linkage studies: single-nucleotide-polymorphism maps versus microsatellite maps. Am J Hum Genet 75:687–692CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nicolae DL, Kong A (2004) Measuring the relative information in allele-sharing linkage studies. Biometrics 60:368–375CrossRefPubMedGoogle Scholar
  36. 36.
    McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48:1279–1283CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Goring HH, Terwilliger JD (2000) Linkage analysis in the presence of errors I: complex-valued recombination fractions and complex phenotypes. Am J Hum Genet 66(3):1095–1106CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Margaritte-Jeannin P, Babron MC, Génin E, Eichenbaum-Voline S, Clerget-Darpoux F (1997) Heterogeneity of marker allele frequencies hinders interpretation of linkage analysis: illustration on chromosome 18 markers. Genet Epidemiol 14:669–674CrossRefPubMedGoogle Scholar
  39. 39.
    Williamson JA, Amos CI (1995) Guess LOD approach: sufficient conditions for robustness. Genet Epidemiol 12(2):163–176CrossRefPubMedGoogle Scholar
  40. 40.
    McPeek MS (1999) Optimal allele-sharing statistics for genetic mapping using affected relatives. Genet Epidemiol 16(3):225–249CrossRefPubMedGoogle Scholar
  41. 41.
    Margaritte-Jeannin P, Babron MC, Clerget-Darpoux F (2007) On the choice of linkage statistics. BMC Proc 1(Suppl 1):S102CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Basu S, Stephens M, Pankow JS, Thompson EA (2010) A likelihood-based trait-model-free approach for linkage detection of a binary trait. Biometrics 66:201–213. (http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml)
  43. 43.
    Risch N, Zhang H (1995) Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 268(5217):1584–1589CrossRefPubMedGoogle Scholar
  44. 44.
    Rogus JJ, Krolewski AS (1996) Using discordant sib pairs to map loci for qualitative traits with high sibling recurrence risk. Am J Hum Genet 59(6):1376–1381PubMedPubMedCentralGoogle Scholar
  45. 45.
    Sham PC, Zhao JH, Curtis D (1997) Optimal weighting scheme for affected sib-pair analysis of sibship data. Ann Hum Genet 61:61–69CrossRefPubMedGoogle Scholar
  46. 46.
    Greenwood CMT, Bull SB (1999) Down-weighting of multiple affected sib pairs leads to biased likelihood ratio tests under no linkage. Am J Hum Genet 64:1248–1252CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Greenwood CMT, Bull SB (1997) Incorporation of covariates into genome scanning using sib-pair analysis in bipolar affective disorder. Genet Epidemiol 14(6):635–640CrossRefPubMedGoogle Scholar
  48. 48.
    Greenwood CMT, Bull SB (1999) Analysis of affected sib pairs, with covariates-–with and without constraints. Am J Hum Genet 64(3):871–885CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bull SB, Greenwood CMT, Mirea L, Morgan K (2002) Regression models for allele sharing: analysis of accumulating data in affected sib pair studies. Stat Med 21:431–444CrossRefPubMedGoogle Scholar
  50. 50.
    Olson JM (1999) A general conditional-logistic model for affected-relative-pair linkage studies. Am J Hum Genet 65:1760–1769CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Goddard KA, Witte JS, Suarez BK, Catalona WJ, Olson JM (2001) Model-free linkage analysis with covariates confirms linkage of prostate cancer to chromosomes 1 and 4. Am J Hum Genet 68:1197–1206CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Xu W, Taylor C, Veenstra J, Bull SB, Corey M, Greenwood CM (2005) Recursive partitioning models for linkage in COGA data. BMC Genet 6(Suppl 1):S38CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Xu W, Schulze TG, DePaulo JR, Bull SB, McMahon FJ, Greenwood CM (2006) A tree-based model for allele-sharing-based linkage analysis in human complex diseases. Genet Epidemiol 30:155–169CrossRefPubMedGoogle Scholar
  54. 54.
    Nicolae DL (1999) Allele sharing models in gene mapping: a likelihood approach. Ph.D. thesis, Dept. Statistics, Univ. ChicagoGoogle Scholar
  55. 55.
    Whittemore AS, Halpern J (2006) Nonparametric linkage analysis using person-specific covariates. Genet Epidemiol 30(5):369–379CrossRefPubMedGoogle Scholar
  56. 56.
    Strauch K, Fimmers R, Kurz T, Deichmann KA, Wienker TF, Baur MP (2000) Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. Am J Hum Genet 66:1945–1957CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sinsheimer JS, Blangero J, Lange K (2000) Gamete-competition models. Am J Hum Genet 66(3):1168–1172CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Greenwood CMT, Morgan K (2000) The impact of transmission ratio distortion on allele sharing in affected sibling pairs. Am J Hum Genet 66:2001–2004CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Huang Q, Shete S, Amos CI (2004) Ignoring linkage disequilibrium among tightly linked markers induces false-positive evidence of linkage for affected sib pair analysis. Am J Hum Genet 75(6):1106–1112CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Schaid DJ, McDonnell SK, Wang L, Cunningham JM, Thibodeau SN (2002) Caution on pedigree haplotype inference with software that assumes linkage equilibrium. Am J Hum Genet 71(4):992–995CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cho K, Dupuis J (2009) Handling linkage disequilibrium in qualitative trait linkage analysis using dense SNPs: a two-step strategy. BMC Genet 10:44CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Abecasis GR, Wigginton JE (2005) Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet 77:754–767CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Stewart WC, Peljto AL, Greenberg DA (2010) Multiple subsampling of dense SNP data localizes disease genes with increased precision. Human Hered 69:152–159. (software http://www.mathmed.org/wclstewart/HOME/SOFT/soft.html)
  64. 64.
    Sinha R, Igo RP Jr, Saini SK, Elston RC, Luo Y (2009) Bayesian intervals for linkage locations. Genet Epidemiol 33(7):604–616CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lander ES, Kruglyak L (1995) Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet 11:241CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Wei Xu
    • 1
    • 7
  • Jin Ma
    • 2
  • Celia M. T. Greenwood
    • 3
    • 4
  • Andrew D. Paterson
    • 5
    • 7
  • Shelley B. Bull
    • 6
    • 7
  1. 1.Department of Biostatistics, Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
  2. 2.Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
  3. 3.Lady Davis Research InstituteJewish General HospitalMontréalCanada
  4. 4.Department of Oncology and Department of Epidemiology, Biostatistics & Occupational HealthMcGill UniversityQCCanada
  5. 5.Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoCanada
  6. 6.Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
  7. 7.Dalla Lana School of Public HealthUniversity of TorontoTorontoCanada

Personalised recommendations