Model-Based Linkage Analysis of a Quantitative Trait

  • Yeunjoo E. Song
  • Sunah Song
  • Audrey H. Schnell
Part of the Methods in Molecular Biology book series (MIMB, volume 1666)


Linkage Analysis is a family-based method of analysis to examine whether any typed genetic markers cosegregate with a given trait, in this case a quantitative trait. If linkage exists, this is taken as evidence in support of a genetic basis for the trait. Historically, linkage analysis was performed using a binary disease trait, but has been extended to include quantitative disease measures. Quantitative traits are desirable as they provide more information than binary traits. Linkage analysis can be performed using single-marker methods (one marker at a time) or multipoint (using multiple markers simultaneously). In model-based linkage analysis the genetic model for the trait of interest is specified. There are many software options for performing linkage analysis. Here, we use the program package Statistical Analysis for Genetic Epidemiology (S.A.G.E.). S.A.G.E. was chosen because it also includes programs to perform data cleaning procedures and to generate and test genetic models for a quantitative trait, in addition to performing linkage analysis. We demonstrate in detail the process of running the program LODLINK to perform single-marker analysis, and MLOD to perform multipoint analysis using output from SEGREG, where SEGREG was used to determine the best fitting statistical model for the trait.

Key words

Linkage analysis Quantitative trait LOD score Recombination fraction Statistical analysis for genetic epidemiology (S.A.G.E.) Model-based Segregation analysis Pedigree likelihood 


  1. 1.
    Ott J (1999) Analysis of human genetic linkage. University Press, Baltimore MDGoogle Scholar
  2. 2.
    Elston RC, Stewart J (1971) A general model for the genetic analysis of pedigree data. Hum Hered 21:523–542CrossRefPubMedGoogle Scholar
  3. 3.
    Lander ES, Green P (1987) Construction of multilocus genetic maps in human. Proc Natl Acad Sci U S A 84:2363–2367CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bailey-Wilson JE (2005) Parametric versus nonparametric and two-point versus multipoint: controversies in gene mapping. In: Dunn M et al (eds) Encyclopedia of genetics, genomics, proteomics and bioinformatics. John Wiley & Sons, Ltd, Hoboken, N.JGoogle Scholar
  5. 5.
    Clerget-Darpoux F, Bonaiti-Pellie C, Hochez J (1986) Effects of misspecifying genetic parameters in lod score analysis. Biometrics 42:393–399CrossRefPubMedGoogle Scholar
  6. 6.
    Weeks DE et al (1990) Measuring the inflation of the lod score due to its maximization over model parameter values in human linkage analysis. Genet Epidemiol 7:237–243CrossRefPubMedGoogle Scholar
  7. 7.
    Ott J (1974) Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies. Amer J Hum Genet 26:588–597PubMedPubMedCentralGoogle Scholar
  8. 8.
    Lathrop GM et al (1984) Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A 81:3443–3446CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lathrop GM et al (1985) Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet 37:482–498PubMedPubMedCentralGoogle Scholar
  10. 10.
    Buetow KH (1991) Influence of aberrant observations on high-resolution linkage analysis outcomes. Amer J Hum Genet 49:985–994PubMedPubMedCentralGoogle Scholar
  11. 11.
    Risch N, Giuffra L (1992) Model misspecification and multipoint linkage analysis. Hum Hered 42:77–92CrossRefPubMedGoogle Scholar
  12. 12.
    S.A.G.E. 6.4 (2016). Statistical analysis for genetic epidemiology
  13. 13.
    Li H, Schaid DJ (1997) GENEHUNTER: application to analysis of bipolar pedigrees and some extensions. Genet Epidemiol 14:659–663CrossRefPubMedGoogle Scholar
  14. 14.
    O'Connell JR, Weeks DE (1995) The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet 11:402–408CrossRefPubMedGoogle Scholar
  15. 15.
    Lange K et al (2001) Mendel version 4.0: a complete package for the exact genetic analysis of discrete traits in pedigree and population data sets. Am J Hum Genet S69:504Google Scholar
  16. 16.
    Cubells JF et al (2011) Linkage analysis of plasma dopamine β-hydroxylase activity in families of patients with schizophrenia. Hum Genet 130(5):635–643. [in Preess]CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Yeunjoo E. Song
    • 1
  • Sunah Song
    • 1
  • Audrey H. Schnell
    • 2
  1. 1.Case Western Reserve UniversityClevelandUSA
  2. 2.Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular InstituteUniversity Hospitals Cleveland Medical CenterClevelandUSA

Personalised recommendations