A Brief Introduction to Single-Molecule Fluorescence Methods

  • Siet M. J. L. van den Wildenberg
  • Bram Prevo
  • Erwin J. G. PetermanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1665)


One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

Key words

Microscopy Confocal fluorescence TIRF Wide-field epi-fluorescence Fluorophore 


  1. 1.
    Stokes GG (1852) On the change of refrangibility of light. Philos Trans R Soc Lond 142:463–562CrossRefGoogle Scholar
  2. 2.
    Herschel JFW (1845) On a case of superficial colour presented by a homogeneous liquid internally colourless. Philos Trans R Soc Lond 135:143–145CrossRefGoogle Scholar
  3. 3.
    Herschel JFW (1845) On the epipolic dispersion of light, being a supplement to a paper entitled, “on a case of superficial colour presented by a homogeneous liquid internally colourless”. Philos Trans R Soc Lond 135:147–153CrossRefGoogle Scholar
  4. 4.
    Brewster D (1846) On the decomposition and dispersion of light within solid and fluid bodies. Trans R Soc Edinb 16(3):11Google Scholar
  5. 5.
    Lakowicz JR (2006) Principles of fluorescence microscopy, 3rd edn. Springer, New York, NYCrossRefGoogle Scholar
  6. 6.
    Hirschfeld T (1976) Optical microscopic observation of single small molecules. J Opt Soc Am 66(10):1124–1124Google Scholar
  7. 7.
    Nguyen DC, Keller RA, Jett JH, Martin JC (1987) Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence. Anal Chem 59(17):2158–2161CrossRefPubMedGoogle Scholar
  8. 8.
    Peck K, Stryer L, Glazer AN, Mathies RA (1989) Single-molecule fluorescence detection – auto-correlation criterion and experimental realization with phycoerythrin. Proc Natl Acad Sci U S A 86(11):4087–4091CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Moerner WE, Kador L (1989) Finding a single molecule in a haystack - optical-detection and spectroscopy of single absorbers in solids. Anal Chem 61(21):A1217–A1223Google Scholar
  10. 10.
    Orrit M, Bernard J (1990) Single pentacene molecules detected by fluorescence excitation in a para-terphenyl crystal. Phys Rev Lett 65(21):2716–2719CrossRefPubMedGoogle Scholar
  11. 11.
    Shera EB, Seitzinger NK, Davis LM, Keller RA, Soper SA (1990) Detection of single fluorescent molecules. Chem Phys Lett 174(6):553–557CrossRefGoogle Scholar
  12. 12.
    Moerner WE, Shechtman Y, Wang Q (2015) Single-molecule spectroscopy and imaging over the decades. Faraday Discuss 184:9–36. doi: 10.1039/c5fd00149h CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tinnefeld P, Sauer M (2005) Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. Angew Chem Int Ed 44(18):2642–2671CrossRefGoogle Scholar
  14. 14.
    Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683CrossRefPubMedGoogle Scholar
  15. 15.
    Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74(8):3597–3619. doi: 10.1063/1.1589587 CrossRefGoogle Scholar
  16. 16.
    Soper SA, Nutter HL, Keller RA, Davis LM, Shera EB (1993) The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy. Photochem Photobiol 57(6):972–977CrossRefGoogle Scholar
  17. 17.
    Wieser S, Schutz GJ (2008) Tracking single molecules in the live cell plasma membrane-do’s and don’t’s. Methods 46(2):131–140CrossRefPubMedGoogle Scholar
  18. 18.
    Kubitscheck U (2013) Fluorescence microscopy: from principles to biological applications. Weinheim, Wiley-BlackwellCrossRefGoogle Scholar
  19. 19.
    Kapanidis AN, Weiss S (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J Chem Phys 117(24):10953–10964. doi: 10.1063/1.1521158 CrossRefGoogle Scholar
  20. 20.
    Peterman EJG, Brasselet S, Moerner WE (1999) The fluorescence dynamics of single molecules of green fluorescent protein. J Phys Chem A 103(49):10553–10560. doi: 10.1021/jp991968o CrossRefGoogle Scholar
  21. 21.
    Kuno M, Fromm DP, Hamann HF, Gallagher A, Nesbitt DJ (2000) Nonexponential “blinking” kinetics of single CdSe quantum dots: a universal power law behavior. J Chem Phys 112(7):3117–3120. doi: 10.1063/1.480896 CrossRefGoogle Scholar
  22. 22.
    Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76CrossRefPubMedGoogle Scholar
  23. 23.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775CrossRefPubMedGoogle Scholar
  24. 24.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937CrossRefGoogle Scholar
  25. 25.
    Kaji N, Tokeshi M, Baba Y (2007) Single-molecule measurements with a single quantum dot. Chem Rec 7(5):295–304CrossRefPubMedGoogle Scholar
  26. 26.
    Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52CrossRefPubMedGoogle Scholar
  27. 27.
    Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW, Nie SM (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16(1):63–72CrossRefPubMedGoogle Scholar
  28. 28.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, AM W, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene-expression. Science 263(5148):802–805CrossRefPubMedGoogle Scholar
  30. 30.
    Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Review – the fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224CrossRefPubMedGoogle Scholar
  31. 31.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909. doi: 10.1038/Nmeth819 CrossRefPubMedGoogle Scholar
  32. 32.
    Wu B, Piatkevich KD, Lionnet T, Singer RH, Verkhusha VV (2011) Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr Opin Cell Biol 23(3):310–317. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877. doi: 10.1126/science.1074952 CrossRefPubMedGoogle Scholar
  34. 34.
    HP L, Xun LY, Xie XS (1998) Single-molecule enzymatic dynamics. Science 282(5395):1877–1882. doi: 10.1126/science.282.5395.1877 CrossRefGoogle Scholar
  35. 35.
    Rutkauskas D, Novoderezhkin V, Cogdell RJ, van Grondelle R (2005) Fluorescence spectroscopy of conformational changes of single LH2 complexes. Biophys J 88(1):422–435. doi: 10.1529/biophysj.104.048629 CrossRefPubMedGoogle Scholar
  36. 36.
    Murphy DB (2001) Fundamentals of light microscopy and electronic imaging. Wiley-Liss, Inc., New York, NYGoogle Scholar
  37. 37.
    Michalet X, Siegmund OHW, Vallerga JV, Jelinsky P, Millaud JE, Weiss S (2007) Detectors for single-molecule fluorescence imaging and spectroscopy. J Mod Opt 54(2–3):239–281. doi: 10.1080/09500340600769067 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. 2. Experimental realization. Biopolymers 13(1):29–61CrossRefPubMedGoogle Scholar
  39. 39.
    Eigen M, Rigler R (1994) Sorting single molecules – application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A 91(13):5740–5747CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Verbrugge S, Kapitein LC, Peterman EJG (2007) Kinesin moving through the spotlight: single-motor fluorescence microscopy with submillisecond time resolution. Biophys J 92(7):2536–2545. doi: 10.1529/biophysj.106.093575 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Anderson CM, Georgiou GN, Morrison IEG, Stevenson GVW, Cherry RJ (1992) Tracking of cell-surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera – low-density-lipoprotein and influenza-virus receptor mobility at 4-degrees-C. J Cell Sci 101:415–425PubMedGoogle Scholar
  42. 42.
    Hecht E (1998) Optics, 3rd edn. Addison-Wesley, Boston, MAGoogle Scholar
  43. 43.
    Dickson RM, Norris DJ, Tzeng YL, Moerner WE (1996) Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. Science 274(5289):966–969CrossRefPubMedGoogle Scholar
  44. 44.
    Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2(11):764–774. doi: 10.1034/j.1600-0854.2001.21104.x CrossRefPubMedGoogle Scholar
  45. 45.
    Verveer PJ, Swoger J, Pampaloni F, Greger K, Marcello M, Stelzer EH (2007) High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat Methods 4(4):311–313. doi: 10.1038/nmeth1017 PubMedGoogle Scholar
  46. 46.
    Pitrone PG, Schindelin J, Stuyvenberg L, Preibisch S, Weber M, Eliceiri KW, Huisken J, Tomancak P (2013) OpenSPIM: an open-access light-sheet microscopy platform. Nat Methods 10(7):598–599. doi: 10.1038/nmeth.2507 CrossRefPubMedGoogle Scholar
  47. 47.
    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009. doi: 10.1126/science.1100035 CrossRefPubMedGoogle Scholar
  48. 48.
    Ritter JG, Veith R, Veenendaal A, Siebrasse JP, Kubitscheck U (2010) Light sheet microscopy for single molecule tracking in living tissue. PLoS One 5(7):e11639. doi: 10.1371/journal.pone.0011639 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Galland R, Grenci G, Aravind A, Viasnoff V, Studer V, Sibarita JB (2015) 3D high- and super-resolution imaging using single-objective SPIM. Nat Methods 12(7):641–644. doi: 10.1038/nmeth.3402 CrossRefPubMedGoogle Scholar
  50. 50.
    Meddens MB, Liu S, Finnegan PS, Edwards TL, James CD, Lidke KA (2016) Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution. Biomed Opt Express 7(6):2219–2236. doi: 10.1364/BOE.7.002219 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, Chen S, Berry RM, Palmer T, Berks BC (2008) Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc Natl Acad Sci U S A 105(40):15376–15381. doi: 10.1073/pnas.0806338105 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kapitein LC, Janson ME, van den Wildenberg S, Hoogenraad CC, Schmidt CF, Peterman EJG (2008) Microtubule-driven multimerization recruits ase1p onto overlapping microtubules. Curr Biol 18(21):1713–1717. doi: 10.1016/j.cub.2008.09.046 CrossRefPubMedGoogle Scholar
  53. 53.
    van Mameren J, Modesti M, Kanaar R, Wyman C, Peterman EJG, Wuite GJL (2009) Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature 457(7230):745–748. doi: 10.1038/nature07581 CrossRefPubMedGoogle Scholar
  54. 54.
    Schmidt T, Schutz GJ, Baumgartner W, Gruber HJ, Schindler H (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci U S A 93(7):2926–2929CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Yildiz A, Selvin PR (2005) Fluorescence imaging with one manometer accuracy: application to molecular motors. Acc Chem Res 38(7):574–582. doi: 10.1021/ar040136s CrossRefPubMedGoogle Scholar
  57. 57.
    Saxton MJ (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys J 72(4):1744–1753CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gross D, Webb WW (1986) Molecular counting of low-density-lipoprotein particles as individuals and small clusters on cell-surfaces. Biophys J 49(4):901–911CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kwok BH, Kapitein LC, Kim JH, Peterman EJG, Schmidt CF, Kapoor TM (2006) Allosteric inhibition of kinesin-5 modulates its processive directional motility. Nat Chem Biol 2(9):480–485. doi: 10.1038/nchembio812 CrossRefPubMedGoogle Scholar
  60. 60.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi: 10.1126/science.1127344 CrossRefPubMedGoogle Scholar
  61. 61.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi: 10.1038/nmeth929 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176. doi: 10.1002/anie.200802376 CrossRefGoogle Scholar
  63. 63.
    Lacoste TD, Michalet X, Pinaud F, Chemla DS, Alivisatos AP, Weiss S (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci U S A 97(17):9461–9466CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Agrawal A, Deo R, Wang GD, Wang MD, Nie SM (2008) Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes. Proc Natl Acad Sci U S A 105(9):3298–3303. doi: 10.1073/pnas.0712351105 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Churchman LS, Okten Z, Rock RS, Dawson JF, Spudich JA (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci U S A 102(5):1419–1423. doi: 10.1073/pnas.0409487102 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhuang XW, Bartley LE, Babcock HP, Russell R, Ha TJ, Herschlag D, Chu S (2000) A single-molecule study of RNA catalysis and folding. Science 288(5473):2048. doi: 10.1126/science.288.5473.2048 CrossRefPubMedGoogle Scholar
  67. 67.
    Mori T, Vale RD, Tomishige M (2007) Conformation of kinesin dimer at ATP-waiting state probed by single molecule FRET. Biophys J 2007:498Google Scholar
  68. 68.
    Prevo B, Peterman EJ (2014) Forster resonance energy transfer and kinesin motor proteins. Chem Soc Rev 43(4):1144–1155. doi: 10.1039/c3cs60292c CrossRefPubMedGoogle Scholar
  69. 69.
    Corrie JET, Craik JS, Munasinghe VRN (1998) A homobifunctional rhodamine for labeling proteins with defined orientations of a fluorophore. Bioconjug Chem 9(2):160–167. doi: 10.1021/bc970174e CrossRefPubMedGoogle Scholar
  70. 70.
    Asenjo AB, Sosa H (2009) A mobile kinesin-head intermediate during the ATP-waiting state. Proc Natl Acad Sci U S A 106(14):5657–5662. doi: 10.1073/pnas.0808355106 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Rosenow MA, Huffman HA, Phail ME, Wachter RM (2004) The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry 43(15):4464–4472. doi: 10.1021/bi0361315 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Siet M. J. L. van den Wildenberg
    • 1
    • 2
  • Bram Prevo
    • 1
  • Erwin J. G. Peterman
    • 1
    Email author
  1. 1.LaserLaB and Department of Physics and AstronomyVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Équipe de VolcanologieObservatoire de Physique de GlobeClermant-FerrandFrance

Personalised recommendations