Combining Structure–Function and Single-Molecule Studies on Cytoplasmic Dynein

  • Lu Rao
  • Maren Hülsemann
  • Arne GennerichEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1665)


Cytoplasmic dynein is the largest and most intricate cytoskeletal motor protein. It is responsible for a vast array of biological functions, ranging from the transport of organelles and mRNAs to the movement of nuclei during neuronal migration and the formation and positioning of the mitotic spindle during cell division. Despite its megadalton size and its complex design, recent success with the recombinant expression of the dynein heavy chain has advanced our understanding of dynein’s molecular mechanism through the combination of structure–function and single-molecule studies. Single-molecule fluorescence assays have provided detailed insights into how dynein advances along its microtubule track in the absence of load, while optical tweezers have yielded insights into the force generation and stalling behavior of dynein. Here, using the S. cerevisiae expression system, we provide improved protocols for the generation of dynein mutants and for the expression and purification of the mutated and/or tagged proteins. To facilitate single-molecule fluorescence and optical trapping assays, we further describe updated, easy-to-use protocols for attaching microtubules to coverslip surfaces. The presented protocols together with the recently solved crystal structures of the dynein motor domain will further simplify and accelerate hypothesis-driven mutagenesis and structure–function studies on dynein.

Key words

Microtubules Microtubule motor proteins Cytoplasmic dynein Recombinant proteins Microtubule immobilization Fluorescence labeling Single-molecule assays Optical tweezers Optical trapping Yeast gene manipulation 



The authors would like to thank Lisa Baker for her help in editing the manuscript. The authors are supported by NIH Grant R01GM098469.


  1. 1.
    Abe TK, Honda T, Takei K, Mikoshiba K, Hoffman-Kim D, Jay DG, Kuwano R (2008) Dynactin is essential for growth cone advance. Biochem Biophys Res Commun 372(3):418–422CrossRefPubMedGoogle Scholar
  2. 2.
    Grabham PW, Seale GE, Bennecib M, Goldberg DJ, Vallee RB (2007) Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth. J Neurosci 27(21):5823–5834CrossRefPubMedGoogle Scholar
  3. 3.
    Kardon J, Vale R (2009) Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 10(12):854–865CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tai CY, Dujardin DL, Faulkner NE, Vallee RB (2002) Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J Cell Biol 156(6):959–968CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vallee RB, Williams JC, Varma D, Barnhart LE (2004) Dynein: An ancient motor protein involved in multiple modes of transport. J Neurobiol 58(2):189–200CrossRefPubMedGoogle Scholar
  6. 6.
    Yamada M, Toba S, Yoshida Y, Haratani K, Mori D, Yano Y, Mimori-Kiyosue Y, Nakamura T, Itoh K, Fushiki S, Setou M, Wynshaw-Boris A, Torisawa T, Toyoshima Y, Hirotsune S (2008) LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. EMBO J 27(19):2471–2483CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Peeters K, Bervoets S, Chamova T, Litvinenko I, De Vriendt E, Bichev S, Kancheva D, Mitev V, Kennerson M, Timmerman V, De Jonghe P, Tournev I, MacMillan J, Jordanova A (2015) Novel mutations in the DYNC1H1 tail domain refine the genetic and clinical spectrum of dyneinopathies. Hum Mutat 36(3):287–291CrossRefPubMedGoogle Scholar
  8. 8.
    Chen XJ, Xu H, Cooper HM, Liu Y (2014) Cytoplasmic dynein: a key player in neurodegenerative and neurodevelopmental diseases. Sci China Life Sci 57(4):372–377CrossRefPubMedGoogle Scholar
  9. 9.
    Gelineau-Morel R, Lukacs M, Weaver KN, Hufnagel RB, Gilbert DL, Stottmann RW (2016) Congenital cataracts and gut dysmotility in a DYNC1H1 dyneinopathy patient. Genes (Basel) 7(10):85–92CrossRefGoogle Scholar
  10. 10.
    Harms MB, Ori-McKenney KM, Scoto M, Tuck EP, Bell S, Ma D, Masi S, Allred P, Al-Lozi M, Reilly MM, Miller LJ, Jani-Acsadi A, Pestronk A, Shy ME, Muntoni F, Vallee RB, Baloh RH (2012) Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology 78(22):1714–1720CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Neveling K, Martinez-Carrera LA, Holker I, Heister A, Verrips A, Hosseini-Barkooie SM, Gilissen C, Vermeer S, Pennings M, Meijer R, te Riele M, Frijns CJ, Suchowersky O, MacLaren L, Rudnik-Schoneborn S, Sinke RJ, Zerres K, Lowry RB, Lemmink HH, Garbes L, Veltman JA, Schelhaas HJ, Scheffer H, Wirth B (2013) Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy. Am J Hum Genet 92(6):946–954CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Niu Q, Wang X, Shi M, Jin Q (2015) A novel DYNC1H1 mutation causing spinal muscular atrophy with lower extremity predominance. Neurol Genet 1(2):e20CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Strickland AV, Schabhuttl M, Offenbacher H, Synofzik M, Hauser NS, Brunner-Krainz M, Gruber-Sedlmayr U, Moore SA, Windhager R, Bender B, Harms M, Klebe S, Young P, Kennerson M, Garcia AS, Gonzalez MA, Zuchner S, Schule R, Shy ME, Auer-Grumbach M (2015) Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1. J Neurol 262(9):2124–2134CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ding D, Chen Z, Li K, Long Z, Ye W, Tang Z, Xia K, Qiu R, Tang B, Jiang H (2016) Identification of a de novo DYNC1H1 mutation via WES according to published guidelines. Sci Rep 6:20423CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Weedon MN, Hastings R, Caswell R, Xie W, Paszkiewicz K, Antoniadi T, Williams M, King C, Greenhalgh L, Newbury-Ecob R, Ellard S (2011) Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease. Am J Hum Genet 89(2):308–312CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364(6439):717–721CrossRefPubMedGoogle Scholar
  17. 17.
    Vallee RB, Tai C, Faulkner NE (2001) LIS1: cellular function of a disease-causing gene. Trends Cell Biol 11(4):155–160CrossRefPubMedGoogle Scholar
  18. 18.
    Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, Parrini E, Valence S, Pierre BS, Oger M, Lacombe D, Genevieve D, Fontana E, Darra F, Cances C, Barth M, Bonneau D, Bernadina BD, N'Guyen S, Gitiaux C, Parent P, des Portes V, Pedespan JM, Legrez V, Castelnau-Ptakine L, Nitschke P, Hieu T, Masson C, Zelenika D, Andrieux A, Francis F, Guerrini R, Cowan NJ, Bahi-Buisson N, Chelly J (2013) Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 45(6):639–647CrossRefPubMedGoogle Scholar
  19. 19.
    Willemsen MH, Vissers LEL, Willemsen MAAP, van Bon BWM, Kroes T, de Ligt J, de Vries BB, Schoots J, Lugtenberg D, Hamel BCJ, van Bokhoven H, Brunner HG, Veltman JA, Kleefstra T (2012) Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J Med Genet 49(3):179–183CrossRefPubMedGoogle Scholar
  20. 20.
    Fiorillo C, Moro F, Yi J, Weil S, Brisca G, Astrea G, Severino M, Romano A, Battini R, Rossi A, Minetti C, Bruno C, Santorelli FM, Vallee R (2014) Novel dynein DYNC1H1 neck and motor domain mutations link distal spinal muscular atrophy and abnormal cortical development. Hum Mutat 35(3):298–302CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Munch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD, Kurt A, Prudlo J, Peraus G, Hanemann CO, Stumm G, Ludolph AC (2004) Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 63(4):724–726CrossRefPubMedGoogle Scholar
  22. 22.
    Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E, Floeter MK, Bidus K, Drayna D, SJ O, Brown RH, Ludlow CL, Fischbeck KH (2003) Mutant dynactin in motor neuron disease. Nat Genet 33(4):455–456CrossRefPubMedGoogle Scholar
  23. 23.
    Farrer MJ, Hulihan MM, Kachergus JM, Dächsel JC, Stoessl AJ, Grantier LL, Calne S, Calne DB, Lechevalier B, Chapon F, Tsuboi Y, Yamada T, Gutmann L, Elibol B, Bhatia KP, Wider C, Vilariño-Güell C, Ross OA, Brown LA, Castanedes-Casey M, Dickson DW, Wszolek ZK (2009) DCTN1 mutations in Perry syndrome. Nat Genet 41(2):163–165CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Vilariño-Güell C, Wider C, Soto-Ortolaza AI, Cobb SA, Kachergus JM, Keeling BH, Dachsel JC, Hulihan MM, Dickson DW, Wszolek ZK, Uitti RJ, Graff-Radford NR, Boeve BF, Josephs KA, Miller B, Boylan KB, Gwinn K, Adler CH, Aasly JO, Hentati F, Destée A, Krygowska-Wajs A, Chartier-Harlin M-C, Ross OA, Rademakers R, Farrer MJ (2009) Characterization of DCTN1 genetic variability in neurodegeneration. Neurology 72(23):2024–2028CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gennerich A, Vale RD (2009) Walking the walk: how kinesin and dynein coordinate their steps. Curr Opin Cell Biol 21(1):59–67CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schmidt H, Carter AP (2016) Structure and mechanism of the dynein motor ATPase. Biopolymers 105(8):557–567CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cianfrocco MA, DeSantis ME, Leschziner AE, Reck-Peterson SL (2015) Mechanism and regulation of cytoplasmic dynein. Annu Rev Cell Dev Biol 31:83–108CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14(11):713–726CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Snider J, Houry WA (2008) AAA+ proteins: diversity in function, similarity in structure. Biochem Soc Trans 36(Pt 1):72–77CrossRefPubMedGoogle Scholar
  30. 30.
    Tucker PA, Sallai L (2007) The AAA+ superfamily—a myriad of motions. Curr Opin Struct Biol 17:641–652CrossRefPubMedGoogle Scholar
  31. 31.
    Erzberger JP, Berger JM (2006) Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct 35:93–114CrossRefPubMedGoogle Scholar
  32. 32.
    Bassler J, Kallas M, Pertschy B, Ulbrich C, Thoms M, Hurt E (2010) The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly. Mol Cell 38(5):712–721CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Garbarino JE, Gibbons IR (2002) Expression and genomic analysis of midasin, a novel and highly conserved AAA protein distantly related to dynein. BMC Genomics 3(1):18CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Barrio-Garcia C, Thoms M, Flemming D, Kater L, Berninghausen O, Bassler J, Beckmann R, Hurt E (2016) Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling. Nat Struct Mol Biol 23(1):37–44CrossRefPubMedGoogle Scholar
  35. 35.
    Schmidt H, Gleave ES, Carter AP (2012) Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat Struct Mol Biol 19(5):492–497CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Carter AP, Cho C, Jin L, Vale RD (2011) Crystal structure of the dynein motor domain. Science 331(6021):1159–1165CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kon T, Sutoh K, Kurisu G (2011) X-Ray structure of a functional full-length dynein motor domain. Nat Struct Mol Biol 18(6):638–642CrossRefPubMedGoogle Scholar
  38. 38.
    Burgess SA, Walker ML, Sakakibara H, Knight PJ, Oiwa K (2003) Dynein structure and power stroke. Nature 421(6924):715–718CrossRefPubMedGoogle Scholar
  39. 39.
    Roberts AJ, Numata N, Walker ML, Kato YS, Malkova B, Kon T, Ohkura R, Arisaka F, Knight PJ, Sutoh K, Burgess SA (2009) AAA+ ring and linker swing mechanism in the dynein motor. Cell 136(3):485–495CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Toropova K, Zou S, Roberts AJ, Redwine WB, Goodman BS, Reck-Peterson SL, Leschziner AE (2014) Lis1 regulates dynein by sterically blocking its mechanochemical cycle. elife 3:PMID:25380312CrossRefGoogle Scholar
  41. 41.
    Kon T, Mogami T, Ohkura R, Nishiura M, Sutoh K (2005) ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nat Struct Mol Biol 12(6):513–519CrossRefPubMedGoogle Scholar
  42. 42.
    DeWitt MA, Cypranowska CA, Cleary FB, Belyy V, Yildiz A (2015) The AAA3 domain of cytoplasmic dynein acts as a switch to facilitate microtubule release. Nat Struct Mol Biol 22(1):73–80CrossRefPubMedGoogle Scholar
  43. 43.
    DeWitt MA, Chang AY, Combs PA, Yildiz A (2012) Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains. Science 335(6065):221–225CrossRefPubMedGoogle Scholar
  44. 44.
    Qiu W, Derr ND, Goodman BS, Villa E, Wu D, Shih W, Reck-Peterson SL (2012) Dynein achieves processive motion using both stochastic and coordinated stepping. Nat Struct Mol Biol 19(2):193–200CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nicholas MP, Berger F, Rao L, Brenner S, Cho C, Gennerich A (2015) Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains. Proc Natl Acad Sci U S A 112(20):6371–6376CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nicholas MP, Hook P, Brenner S, Wynne CL, Vallee RB, Gennerich A (2015) Control of cytoplasmic dynein force production and processivity by its C-terminal domain. Nat Commun 6:6206CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rao L, Romes EM, Nicholas MP, Brenner S, Tripathy A, Gennerich A, Slep KC (2013) The yeast dynein Dyn2-Pac11 complex is a dynein dimerization/processivity factor: structural and single-molecule characterization. Mol Biol Cell 24(15):2362–2377CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gennerich A, Carter AP, Reck-Peterson SL, Vale RD (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131(5):952–965CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kon T, Imamula K, Roberts AJ, Ohkura R, Knight PJ, Gibbons IR, Burgess SA, Sutoh K (2009) Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat Struct Mol Biol 16(3):325–333CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kon T, Nishiura M, Ohkura R, Toyoshima YY, Sutoh K (2004) Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43(35):11266–11274CrossRefPubMedGoogle Scholar
  51. 51.
    Cleary FB, Dewitt MA, Bilyard T, Htet ZM, Belyy V, Chan DD, Chang AY, Yildiz A (2014) Tension on the linker gates the ATP-dependent release of dynein from microtubules. Nat Commun 5:4587CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gennerich A (ed) (2017) Optical tweezers: methods and protocols, vol 1486. Methods in molecular biology. Springer, New York, NYGoogle Scholar
  53. 53.
    Nicholas MP, Rao L, Gennerich A (2014) Covalent immobilization of microtubules on glass surfaces for molecular motor force measurements and other single-molecule assays. Methods Mol Biol 1136:137–169CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Nicholas MP, Rao L, Gennerich A (2014) An improved optical tweezers assay for measuring the force generation of single kinesin molecules. Methods Mol Biol 1136:171–246CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Miné-Hattab J, Rothstein R (2012) Gene targeting and homologous recombination in Saccharomyces cerevisiae. Top Curr Genet 23:71–89CrossRefGoogle Scholar
  56. 56.
    Lundblad V, Hartzog G, Moqtaderi Z (2001) Manipulation of cloned yeast DNA. Curr Protoc Mol Biol Chapter 13:Unit13.10PubMedGoogle Scholar
  57. 57.
    Lorenz TC (2012) Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp 63:e3998Google Scholar
  58. 58.
    Roux KH (2009) Optimization and troubleshooting in PCR. Cold Spring Harb Protoc 2009(4):pdb ip66CrossRefPubMedGoogle Scholar
  59. 59.
    Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism. Bioeng Bugs 1(6):395–403CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34CrossRefPubMedGoogle Scholar
  61. 61.
    Gietz RD, Schiestl RH (2007) Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):1–4CrossRefPubMedGoogle Scholar
  62. 62.
    Adames NR, Cooper JA (2000) Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J Cell Biol 149(4):863–874CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lee W-L, Kaiser MA, Cooper JA (2005) The offloading model for dynein function: differential function of motor subunits. J Cell Biol 168(2):201–207CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Johnston M, Davis RW (1984) Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol 4(8):1440–1448CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126(2):335–348CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Trokter M, Mücke N, Surrey T (2012) Reconstitution of the human cytoplasmic dynein complex. Proc Natl Acad Sci U S A 109(51):20895–20900CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Flick JS, Johnston M (1990) Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. Mol Cell Biol 10(9):4757–4769CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Weinhandl K, Winkler M, Glieder A, Camattari A (2014) Carbon source dependent promoters in yeasts. Microb Cell Factories 13:5CrossRefGoogle Scholar
  69. 69.
    McKenney RJ, Huynh W, Vale RD, Sirajuddin M (2016) Tyrosination of alpha-tubulin controls the initiation of processive dynein-dynactin motility. EMBO J 35(11):1175–1185CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Valentine MT, Fordyce PM, Krzysiak TC, Gilbert SP, Block SM (2006) Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nat Cell Biol 8(5):470–476CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Howard J, Hyman AA (1993) Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence microscopy. Methods Cell Biol 39:105–113CrossRefPubMedGoogle Scholar
  72. 72.
    Williams RC Jr, Rone LA (1989) End-to-end joining of taxol-stabilized GDP-containing microtubules. J Biol Chem 264(3):1663–1670PubMedGoogle Scholar
  73. 73.
    Ross JL, Shuman H, Holzbaur EL, Goldman YE (2008) Kinesin and dynein-dynactin at intersecting microtubules: motor density affects dynein function. Biophys J 94(8):3115–3125CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Fischer T, Agarwal A, Hess H (2009) A smart dust biosensor powered by kinesin motors. Nat Nanotechnol 4(3):162–166CrossRefPubMedGoogle Scholar
  75. 75.
    Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol 66(1):198–200CrossRefPubMedGoogle Scholar
  76. 76.
    Brown TB, Hancock WO (2002) A polarized microtubule array for kinesin-powered-nanoscale assembly and force generation. Nano Lett 2(10):1131–1135CrossRefGoogle Scholar
  77. 77.
    Selvin PR, Ha T (eds) (2008) Single-molecule techniques: a laboratory manual. Cold Sping Harbor Laboratory Press, Cold Sping Harbor, NYGoogle Scholar
  78. 78.
    Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065CrossRefPubMedGoogle Scholar
  79. 79.
    Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303(5658):676–678CrossRefPubMedGoogle Scholar
  80. 80.
    Svoboda K, Block SM (1994) Force and velocity measured for single kinesin molecules. Cell 77(5):773–784CrossRefPubMedGoogle Scholar
  81. 81.
    Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365(6448):721–727CrossRefPubMedGoogle Scholar
  82. 82.
    Mallik R, Carter BC, Lex SA, King SJ, Gross SP (2004) Cytoplasmic dynein functions as a gear in response to load. Nature 427(6975):649–652CrossRefPubMedGoogle Scholar
  83. 83.
    Walter WJ, Koonce MP, Brenner B, Steffen W (2012) Two independent switches regulate cytoplasmic dynein’s processivity and directionality. Proc Natl Acad Sci U S A 109(14):5289–5293CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Toba S, Watanabe TM, Yamaguchi-Okimoto L, Toyoshima YY, Higuchi H (2006) Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc Natl Acad Sci U S A 103(15):5741–5745CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Ishijima A, Kojima H, Funatsu T, Tokunaga M, Higuchi H, Tanaka H, Yanagida T (1998) Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92(2):161–171CrossRefPubMedGoogle Scholar
  86. 86.
    Belyy V, Yildiz A (2014) Processive cytoskeletal motors studied with single-molecule fluorescence techniques. FEBS Lett 588(19):3520–3525CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Veigel C, Schmidt CF (2011) Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat Rev Mol Cell Biol 12(3):163–176CrossRefPubMedGoogle Scholar
  88. 88.
    Elting MW, Spudich JA (2012) Future challenges in single-molecule fluorescence and laser trap approaches to studies of molecular motors. Dev Cell 23(6):1084–1091CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Yildiz A, Vale RD (2015) Tracking movements of the microtubule motors kinesin and dynein using total internal reflection fluorescence microscopy. Cold Spring Harb Protoc 2015 (9):pdb prot086355Google Scholar
  90. 90.
    Yildiz A, Vale RD (2015) Total internal reflection fluorescence microscopy. Cold Spring Harb Protoc 2015(9):pdb top086348CrossRefPubMedGoogle Scholar
  91. 91.
    Ruhnow F, Zwicker D, Diez S (2011) Tracking single particles and elongated filaments with nanometer precision. Biophys J 100(11):2820–2828CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Gennerich A, Reck-Peterson SL (2011) Probing the force generation and stepping behavior of cytoplasmic dynein. Methods Mol Biol 783:63–80CrossRefPubMedGoogle Scholar
  93. 93.
    Gutiérrez-Medina B, Fehr AN, Block SM (2009) Direct measurements of kinesin torsional properties reveal flexible domains and occasional stalk reversals during stepping. Proc Natl Acad Sci U S A 106(40):17007–17012CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Parenteau J, Durand M, Veronneau S, Lacombe AA, Morin G, Guerin V, Cecez B, Gervais-Bird J, Koh CS, Brunelle D, Wellinger RJ, Chabot B, Abou Elela S (2008) Deletion of many yeast introns reveals a minority of genes that require splicing for function. Mol Biol Cell 19(5):1932–1941CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Petracek ME, Longtine MS (2002) PCR-based engineering of yeast genome. Methods Enzymol 350:445–469CrossRefPubMedGoogle Scholar
  96. 96.
    Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21(11):947–962CrossRefPubMedGoogle Scholar
  97. 97.
    Hua SB, Qiu M, Chan E, Zhu L, Luo Y (1997) Minimum length of sequence homology required for in vivo cloning by homologous recombination in yeast. Plasmid 38(2):91–96CrossRefPubMedGoogle Scholar
  98. 98.
    Schlager MA, Hoang HT, Urnavicius L, Bullock SL, Carter AP (2014) In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J 33(17):1855–1868CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Ori-McKenney KM, Xu J, Gross SP, Vallee RB (2010) A cytoplasmic dynein tail mutation impairs motor processivity. Nat Cell Biol 12(12):1228–1234CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Eske LD, Galipeau DW (1999) Characterization of SiO2 surface treatments using AFM, contact angles and a novel dewpoint technique. Colloid Surface A 154(1–2):33–51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxUSA

Personalised recommendations