Advertisement

Single Molecule FRET Analysis of DNA Binding Proteins

  • Kathy R. Chaurasiya
  • Remus T. Dame
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1665)

Abstract

The complex binding dynamics between DNA and proteins are often obscured by ensemble averaging effects in conventional biochemical experiments. Single-molecule fluorescence methods are powerful tools to investigate DNA–protein interaction dynamics in real time. In this chapter, we focus on using single-molecule Förster Resonance Energy Transfer (smFRET) to probe the binding dynamics of individual proteins on single DNA molecules. We provide a detailed discussion of total internal reflection fluorescence (TIRF) instrument design, nucleic acid labeling with fluorophores, flow cell surface passivation, and data analysis methods.

Key words

Single molecule FRET TIRF Nucleic acid–protein interaction DNA binding protein PEG surface passivation 

Notes

Acknowledgements

The authors thank all the members of the David Rueda laboratory for training in single-molecule FRET methods. This work was supported in part by the Human Frontiers Science Program [RGP0014/2014] and the Netherlands Organization for Scientific Research [VICI 016.160.613].

References

  1. 1.
    Wuite GJ, Smith SB, Young M, Keller D, Bustamante C (2000) Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404(6773):103–106. doi: 10.1038/35003614 CrossRefPubMedGoogle Scholar
  2. 2.
    Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SF, Zhuang X (2008) Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453(7192):184–189. doi: 10.1038/nature06941 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kim S, Schroeder CM, Xie XS (2010) Single-molecule study of DNA polymerization activity of HIV-1 reverse transcriptase on DNA templates. J Mol Biol 395(5):995–1006. doi: 10.1016/j.jmb.2009.11.072 CrossRefPubMedGoogle Scholar
  4. 4.
    Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438(7067):460–465. doi: 10.1038/nature04268 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kapanidis AN, Margeat E, Ho SO, Kortkhonjia E, Weiss S, Ebright RH (2006) Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314(5802):1144–1147. doi: 10.1126/science.1131399 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Herbert KM, Greenleaf WJ, Block SM (2008) Single-molecule studies of RNA polymerase: motoring along. Annu Rev Biochem 77:149–176. doi: 10.1146/annurev.biochem.77.073106.100741 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sorokina M, Koh HR, Patel SS, Ha T (2009) Fluorescent lifetime trajectories of a single fluorophore reveal reaction intermediates during transcription initiation. J Am Chem Soc 131(28):9630–9631. doi: 10.1021/ja902861f CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lee KS, Balci H, Jia H, Lohman TM, Ha T (2013) Direct imaging of single UvrD helicase dynamics on long single-stranded DNA. Nat Commun 4:1878. doi: 10.1038/ncomms2882 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Byrd AK, Matlock DL, Bagchi D, Aarattuthodiyil S, Harrison D, Croquette V, Raney KD (2012) Dda helicase tightly couples translocation on single-stranded DNA to unwinding of duplex DNA: Dda is an optimally active helicase. J Mol Biol 420(3):141–154. doi: 10.1016/j.jmb.2012.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cheng W, Arunajadai SG, Moffitt JR, Tinoco I Jr, Bustamante C (2011) Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science 333(6050):1746–1749. doi: 10.1126/science.1206023 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, Chu S (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419(6907):638–641. doi: 10.1038/nature01083 CrossRefPubMedGoogle Scholar
  12. 12.
    Chaurasiya KR, Ruslie C, Silva MC, Voortman L, Nevin P, Lone S, Beuning PJ, Williams MC (2013) Polymerase manager protein UmuD directly regulates Escherichia coli DNA polymerase III alpha binding to ssDNA. Nucleic Acids Res 41(19):8959–8968. doi: 10.1093/nar/gkt648 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chaurasiya KR, McCauley MJ, Wang W, Qualley DF, Wu T, Kitamura S, Geertsema H, Chan DS, Hertz A, Iwatani Y, Levin JG, Musier-Forsyth K, Rouzina I, Williams MC (2014) Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein. Nat Chem 6(1):28–33. doi: 10.1038/nchem.1795 CrossRefPubMedGoogle Scholar
  14. 14.
    Driessen RP, Sitters G, Laurens N, Moolenaar GF, Wuite GJ, Goosen N, Dame RT (2014) Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry 53(41):6430–6438. doi: 10.1021/bi500344j CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Senavirathne G, Bertram JG, Jaszczur M, Chaurasiya KR, Pham P, Mak CH, Goodman MF, Rueda D (2015) Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution. Nat Commun 6:10209. doi: 10.1038/ncomms10209 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Brouwer I, Sitters G, Candelli A, Heerema SJ, Heller I, de Melo AJ, Zhang H, Normanno D, Modesti M, Peterman EJ, Wuite GJ (2016) Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA. Nature 535(7613):566–569. doi: 10.1038/nature18643 CrossRefPubMedGoogle Scholar
  17. 17.
    Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374(6522):555–559. doi: 10.1038/374555a0 CrossRefPubMedGoogle Scholar
  18. 18.
    Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065. doi: 10.1126/science.1084398 CrossRefPubMedGoogle Scholar
  19. 19.
    Verbrugge S, Lansky Z, Peterman EJ (2009) Kinesin’s step dissected with single-motor FRET. Proc Natl Acad Sci U S A 106(42):17741–17746. doi: 10.1073/pnas.0905177106 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nguyen DC, Keller RA, Jett JH, Martin JC (1987) Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence. Anal Chem 59(17):2158–2161. doi: 10.1021/ac00144a032 CrossRefPubMedGoogle Scholar
  21. 21.
    Hirschfeld T (1976) Optical microscopic observation of single small molecules. Appl Opt 15(12):2965–2966. doi: 10.1364/ao.15.002965 CrossRefPubMedGoogle Scholar
  22. 22.
    Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75CrossRefGoogle Scholar
  23. 23.
    Clegg RM (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–388CrossRefPubMedGoogle Scholar
  24. 24.
    Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7(9):730–734. doi: 10.1038/78948 CrossRefPubMedGoogle Scholar
  25. 25.
    Sofia SJ, Premnath VV, Merrill EW (1998) Poly(ethylene oxide) grafted to silicon surfaces: grafting density and protein adsorption. Macromolecules 31(15):5059–5070. doi: 10.1021/ma971016l CrossRefPubMedGoogle Scholar
  26. 26.
    Jeyachandran YL, Mielczarski JA, Mielczarski E, Rai B (2010) Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces. J Colloid Interface Sci 341(1):136–142. doi: 10.1016/j.jcis.2009.09.007 CrossRefPubMedGoogle Scholar
  27. 27.
    Hua B, Han KY, Zhou R, Kim H, Shi X, Abeysirigunawardena SC, Jain A, Singh D, Aggarwal V, Woodson SA, Ha T (2014) An improved surface passivation method for single-molecule studies. Nat Methods 11(12):1233–1236. doi: 10.1038/nmeth.3143 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Leiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands

Personalised recommendations