Skip to main content

Fluorescence Microscopy of Nanochannel-Confined DNA

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1665))

Abstract

Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level and both the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments and analyze the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tegenfeldt JO, Prinz C, Cao H, Chou S, Reisner WW, Riehn R, Wang YM, Cox EC, Sturm JC, Silberzan P, Austin RH (2004) The dynamics of genomic-length DNA molecules in 100-nm channels. Proc Natl Acad Sci U S A 101(30):10979–10983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vologodskii A, Cozzarelli N (1995) Modeling of long-range electrostatic interactions in DNA. Biopolymers 35(3):289–296

    Article  CAS  PubMed  Google Scholar 

  3. Daoud M, de Gennes PG (1977) Statistics of macromolecular solutions trapped in small pores. J Phys 38:85–93

    Article  CAS  Google Scholar 

  4. Turban L (1984) Conformation of confined macromolecular chains - crossover between slit and capillary. J Phys 45(2):347–353

    Article  CAS  Google Scholar 

  5. Odijk T (1983) On the statistics and dynamics of confined or entangled stiff polymers. Macromolecules 16(8):1340–1344

    Article  CAS  Google Scholar 

  6. Frykholm K, Alizadehheidari M, Fritzsche J, Wigenius J, Modesti M, Persson F, Westerlund F (2014) Probing physical properties of a DNA-protein complex using nanofluidic channels. Small 10(5):884–887. doi:10.1002/smll.201302028

    Article  CAS  PubMed  Google Scholar 

  7. Yang YZ, Burkhardt TW, Gompper G (2007) Free energy and extension of a semiflexible polymer in cylindrical confining geometries. Phys Rev E 76(1):011804. doi:10.1103/PhysRevE.76.011804

    Article  Google Scholar 

  8. Smithe TSC, Iarko V, Muralidhar A, Werner E, Dorfman KD, Mehlig B (2015) Finite-size corrections for confined polymers in the extended de Gennes regime. Phys Rev E 92(6):5. doi:10.1103/PhysRevE.92.062601

    Article  Google Scholar 

  9. Werner E, Mehlig B (2015) Scaling regimes of a semiflexible polymer in a rectangular channel. Phys Rev E 91(5):5. doi:10.1103/PhysRevE.91.050601

    Article  Google Scholar 

  10. Reisner W, Pedersen JN, Austin RH (2012) DNA confinement in nanochannels: physics and biological applications. Rep Prog Phys 75(10). doi:10.1088/0034-4885/75/10/106601

  11. Persson F, Utko P, Reisner W, Larsen NB, Kristensen A (2009) Confinement spectroscopy: probing single DNA molecules with tapered nanochannels. Nano Lett 9(4):1382–1385. doi:10.1021/nl803030e

    Article  CAS  PubMed  Google Scholar 

  12. Persson F, Tegenfeldt JO (2010) DNA in nanochannels - directly visualizing genomic information. Chem Soc Rev 39(3):985–999. doi:10.1039/B912918A

    Article  CAS  PubMed  Google Scholar 

  13. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY

    Google Scholar 

  14. Doi M, Edwards SF (1986) The theory of polymer dynamics, The International Series of Monographs on Physics, vol 73. Oxford University Press, Inc., New York

    Google Scholar 

  15. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York

    Google Scholar 

  16. Reisner W, Morton KJ, Riehn R, Wang YM, Yu ZN, Rosen M, Sturm JC, Chou SY, Frey E, Austin RH (2005) Statics and dynamics of single DNA molecules confined in nanochannels. Phys Rev Lett 94(19):196101

    Article  PubMed  Google Scholar 

  17. Persson F, Westerlund F, Tegenfeldt JO, Kristensen A (2009) Local conformation of confined DNA studied using emission polarization anisotropy. Small 5(2):190–193

    Article  CAS  PubMed  Google Scholar 

  18. Wang YM, Tegenfeldt JO, Reisner W, Riehn R, Guan XJ, Guo L, Golding I, Cox EC, Sturm J, Austin RH (2005) Single-molecule studies of repressor-DNA interactions show long-range interactions. Proc Natl Acad Sci U S A 102(28):9796–9801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Riehn R, Lu MC, Wang YM, Lim SF, Cox EC, Austin RH (2005) Restriction mapping in nanofluidic devices. Proc Natl Acad Sci U S A 102(29):10012–10016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iarko V, Werner E, Nyberg LK, Müller V, Fritzsche J, Ambjörnsson T, Beech JP, Tegenfeldt JO, Mehlig K, Westerlund F, Mehlig B (2015) Extension of nanoconfined DNA: quantitative comparison between experiment and theory. Phys Rev E 92(6):062701

    Article  CAS  Google Scholar 

  21. Werner E, Mehlig B (2014) Confined polymers in the extended de Gennes regime. Phys Rev E 90(6):5. doi:10.1103/PhysRevE.90.062602

    Article  Google Scholar 

  22. Gupta D, Miller JJ, Muralidhar A, Mahshid S, Reisner W, Dorfman KD (2015) Experimental evidence of weak excluded volume effects for nanochannel confined DNA. ACS Macro Lett 4(7):759–763. doi:10.1021/acsmacrolett.5b00340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frykholm K, Nyberg LK, Westerlund F (2017) Exploring DNA–protein interactions on the single DNA molecule level using nanofluidic tools. Integr Biol. doi: 10.1039/C7IB00085E

  24. Zhang C, Guttula D, Liu F, Malar PP, Ng SY, Dai L, Doyle PS, van Kan JA, van der Maarel JRC (2013) Effect of H-NS on the elongation and compaction of single DNA molecules in a nanospace. Soft Matter 9(40):9593–9601. doi:10.1039/c3sm51214b

    Article  CAS  PubMed  Google Scholar 

  25. Roushan M, Kaur P, Karpusenko A, Countryman PJ, Ortiz CP, Fang Lim S, Wang H, Riehn R (2014) Probing transient protein-mediated DNA linkages using nanoconfinement. Biomicrofluidics 8(3):034113. doi:10.1063/1.4882775

    Article  PubMed  PubMed Central  Google Scholar 

  26. Müller V, Westerlund F (2017) Optical DNA mapping in nanofluidic devices: principles and applications. Lab Chip 17:579–590

    Google Scholar 

  27. Bogas D, Nyberg L, Pacheco R, Azevedo NF, Beech JP, Gomila M, Lalucat J, Manaia CM, Nunes OC, Tegenfeldt JO, Westerlund F (2017) Applications of optical DNA mapping in microbiology. BioTechniques 62(6):255–267

    Google Scholar 

  28. Jo K, Dhingra DM, Odijk T, de Pablo JJ, Graham MD, Runnheim R, Forrest D, Schwartz DC (2007) A single-molecule barcoding system using nanoslits for DNA analysis. Proc Natl Acad Sci U S A 104(8):2673–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Das SK, Austin MD, Akana MC, Deshpande P, Cao H, Xiao M (2010) Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes. Nucleic Acids Res 38(18):e177. doi:10.1093/nar/gkq673

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reisner W, Larsen NB, Silahtaroglu A, Kristensen A, Tommerup N, Tegenfeldt JO, Flyvbjerg H (2010) Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc Natl Acad Sci U S A 107(30):13294–13299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nyberg LK, Persson F, Berg J, Bergstrom J, Fransson E, Olsson L, Persson M, Stalnacke A, Wigenius J, Tegenfeldt JO, Westerlund F (2012) A single-step competitive binding assay for mapping of single DNA molecules. Biochem Biophys Res Commun 417(1):404–408. doi:10.1016/j.bbrc.2011.11.128

    Article  CAS  PubMed  Google Scholar 

  32. Frykholm K, Nyberg LK, Lagerstedt E, Noble C, Fritzsche J, Karami N, Ambjornsson T, Sandegren L, Westerlund F (2015) Fast size-determination of intact bacterial plasmids using nanofluidic channels. Lab Chip 15(13):2739–2743. doi:10.1039/c5lc00378d

    Article  CAS  PubMed  Google Scholar 

  33. Madou MJ (2011) Fundamentals of microfabrication and nanotechnology, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  34. Reisner W, Beech JP, Larsen NB, Flyvbjerg H, Kristensen A, Tegenfeldt JO (2007) Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment. Phys Rev Lett 99(5):058302. Artn 058302

    Article  PubMed  Google Scholar 

  35. Nyberg L, Persson F, Ã…kerman B, Westerlund F (2013) Heterogeneous staining: a tool for studies of how fluorescent dyes affect the physical properties of DNA. Nucleic Acids Res. doi:10.1093/nar/gkt755

  36. Mertz J (2010) Introduction to optical microscopy. Roberts and Company, Greenwood Village

    Google Scholar 

  37. Glazer AN, Rye HS (1992) Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature 359(6398):859–861

    Article  CAS  PubMed  Google Scholar 

  38. Spielmann HP, Wemmer DE, Jacobsen JP (1995) Solution structure of a DNA complex with the fluorescent Bis-intercalator TOTO determined by NMR-spectroscopy. Biochemistry 34(27):8542–8553

    Article  CAS  PubMed  Google Scholar 

  39. Kundukad B, Yan J, Doyle PS (2014) Effect of YOYO-1 on the mechanical properties of DNA. Soft Matter 10(48):9721–9728. doi:10.1039/c4sm02025a

    Article  CAS  PubMed  Google Scholar 

  40. Lerman LS (1961) Structural considerations in interaction of DNA and acridines. J Mol Biol 3(1):18–30

    Article  CAS  PubMed  Google Scholar 

  41. Reinert KE (1973) DNA stiffening and elongation caused by binding of ethidium bromide. Biochim Biophys Acta 319(2):135–139

    Article  CAS  PubMed  Google Scholar 

  42. Thamdrup LH, Persson F, Bruus H, Kristensen A, Flyvbjerg H (2007) Experimental investigation of bubble formation during capillary filling of SiO2 nanoslits. Appl Phys Lett 91(16). doi:10.1063/1.2801397

  43. Levy SL, Mannion JT, Cheng J, Reccius CH, Craighead HG (2008) Entropic unfolding of DNA molecules in nanofluidic channels. Nano Lett 8(11):3839–3844. doi:10.1021/nl802256s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Persson F (2009) Nanofluidics for single molecule. Technical University of Denmark, Kongens, Lyngby

    Google Scholar 

  45. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McCaffrey J, Sibert J, Zhang B, Zhang YG, Hu WH, Riethman H, Xiao M (2016) CRISPR-CAS9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis. Nucleic Acids Res 44(2):8. doi:10.1093/nar/gkv878

    Article  Google Scholar 

  47. Grunwald A, Dahan M, Giesbertz A, Nilsson A, Nyberg LK, Weinhold E, Ambjornsson T, Westerlund F, Ebenstein Y (2015) Bacteriophage strain typing by rapid single molecule analysis. Nucleic Acids Res 43(18):e117–e117. doi:10.1093/nar/gkv563

    Article  PubMed  PubMed Central  Google Scholar 

  48. Muller V, Karami N, Nyberg LK, Pichler C, Pedreschi PCT, Quaderi S, Fritzsche J, Ambjornsson T, Ahren C, Westerlund F (2016) Rapid tracing of resistance plasmids in a nosocomial outbreak using optical DNA mapping. Acs Infect Dis 2(5):322–328. doi:10.1021/acsinfecdis.6b00017

    Article  CAS  PubMed  Google Scholar 

  49. Nyberg LK, Quaderi S, Emilsson G, Karami N, Lagerstedt E, Muller V, Noble C, Hammarberg S, Nilsson AN, Sjoberg F, Fritzsche J, Kristiansson E, Sandegren L, Ambjornsson T, Westerlund F (2016) Rapid identification of intact bacterial resistance plasmids via optical mapping of single DNA molecules. Sci Rep 6:10. doi:10.1038/srep30410

    Article  Google Scholar 

  50. Müller V, Rajer F, Frykholm K, Nyberg LK, Quaderi S, Fritzsche J, Kristiansson E, Ambjörnsson T, Sandegren L, Westerlund F (2016) Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci Rep 6:37938. doi: 10.1038/srep37938. http://www.nature.com/articles/srep37938 - supplementary-information

  51. Sydor AM, Czymmek KJ, Puchner EM, Mennella V (2015) Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol 25(12):730–748. doi:10.1016/j.tcb.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  52. Nilsson AN, Emilsson G, Nyberg LK, Noble C, Stadler LS, Fritzsche J, Moore ERB, Tegenfeldt JO, Ambjornsson T, Westerlund F (2014) Competitive binding-based optical DNA mapping for fast identification of bacteria - multi-ligand transfer matrix theory and experimental applications on Escherichia coli. Nucleic Acids Res 42(15). doi:10.1093/nar/gku556

  53. Freitag C, Noble C, Fritzsche J, Persson F, Reiter-Schad M, Nilsson AN, Graneli A, Ambjornsson T, Mir KU, Tegenfeldt JO (2015) Visualizing the entire DNA from a chromosome in a single frame. Biomicrofluidics 9(4). doi:10.1063/1.4923262

  54. Perkins TT, Smith DE, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276(5321):2016–2021

    Article  CAS  PubMed  Google Scholar 

  55. Marie R, Pedersen JN, Bauer DLV, Rasmussen KH, Yusuf M, Volpi E, Flyvbjerg H, Kristensen A, Mir KU (2013) Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proc Natl Acad Sci U S A 100(13):4893–4898. doi:10.1073/pnas.1214570110

    Article  Google Scholar 

  56. Morton KJ, Loutherback K, Inglis DW, Tsui OK, Sturm JC, Chou SY, Austin RH (2008) Crossing microfluidic streamlines to lyse, label and wash cells. Lab Chip 8(9):1448–1453. doi:10.1039/b805614e

    Article  CAS  PubMed  Google Scholar 

  57. Persson F, Thamdrup LH, Mikkelsen MBL, Jaarlgard SE, Skafte-Pedersen P, Bruus H, Kristensen A (2007) Double thermal oxidation scheme for the fabrication of SiO2 nanochannels. Nanotechnology 18(24):245301. doi:10.1088/0957-4484/18/24/245301

    Article  Google Scholar 

  58. Riehn R, Austin RH (2006) Wetting micro- and nanofluidic devices using supercritical water. Anal Chem 78(16):5933–5934

    Article  CAS  PubMed  Google Scholar 

  59. Persson F, Fritzsche J, Mir KU, Modesti M, Westerlund F, Tegenfeldt JO (2012) Lipid-based passivation in nanofluidics. Nano Lett 12:2260–2265. doi:10.1021/nl204535h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fornander LH, Frykholm K, Fritzsche J, Araya J, Nevin P, Werner E, Cakir A, Persson F, Garcin EB, Beuning PJ, Mehlig B, Modesti M, Westerlund F (2016) Visualizing the nonhomogeneous structure of RAD51 filaments using nanofluidic channels. Langmuir 32(33):8403–8412. doi:10.1021/acs.langmuir.6b01877

    Article  CAS  PubMed  Google Scholar 

  61. Frykholm K, Berntsson RPA, Claesson M, de Battice L, Odegrip R, Stenmark P, Westerlund F (2016) DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels. Nucleic Acids Res 44(15):7219–7227. doi:10.1093/nar/gkw352

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Elf J, Li GW, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316(5828):1191–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Community’s Horizon2020 under grant agreement number 634890 entitled BeyondSeq (J.O.T., J.P.B. and F.W.), the Swedish Research Council under grant number 2015-05062 (F.W.), ERA-NET EuroNanoMed II under grant number E0748601 entitled NanoDiaBac (J.O.T., J.P.B. and F.W.). J.O.T. and J.P.B. acknowledges support from NanoLund at Lund University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas O. Tegenfeldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Westerlund, F., Persson, F., Fritzsche, J., Beech, J.P., Tegenfeldt, J.O. (2018). Fluorescence Microscopy of Nanochannel-Confined DNA. In: Peterman, E. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 1665. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7271-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7271-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7270-8

  • Online ISBN: 978-1-4939-7271-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics