Skip to main content

2D-DIGE and Fluorescence Image Analysis

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1664))

Abstract

2D-DIGE is still a very widespread technique in proteomics for the identification of panels of biomarkers, allowing to tackle with some important drawback of classical two-dimensional gel-electrophoresis. However, once 2D-gels are obtained, they must undergo a quite articulated multistep image analysis procedure before the final differential analysis via statistical mono- and multivariate methods. Here, the main steps of image analysis software are described and the most recent procedures reported in the literature are briefly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knowles MR, Cervino S, Skynner HA, Hunt SP, de Felipe C, Salim K, Meneses-Lorente G, McAllister G, Guest PC (2003) Multiplex proteomic analysis by two-dimensional differential in-gel electrophoresis. Proteomics 3:1162–1171

    Article  CAS  PubMed  Google Scholar 

  2. Arentz G, Weiland F, Oehler MK, Hoffmann P (2015) State of the art of 2D DIGE. Proteomics Clin Appl 9(3–4):277–288

    Article  CAS  PubMed  Google Scholar 

  3. Mahnke RC, Corzett TH, McCutchen-Maloney SL, Chromy BA (2006) An integrated proteomic workflow for two-dimensional differential gel electrophoresis and robotic spot picking. J Proteome Res 5:2093–2097

    Article  CAS  PubMed  Google Scholar 

  4. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    Article  CAS  PubMed  Google Scholar 

  5. Karp NA, Lilley KS (2005) Maximising sensitivity for detecting changes in protein expression: experimental design using minimal CyDyes. Proteomics 5:3105–3115

    Article  CAS  PubMed  Google Scholar 

  6. Karp NA, Feret R, Rubtsov DV, Lilley KS (2008) Comparison of DIGE and post-stained gel electrophoresis with both traditional and SameSpots analysis for quantitative proteomics. Proteomics 8:948–960

    Article  CAS  PubMed  Google Scholar 

  7. Mitulovic G (2015) New HPLC techniques for proteomics analysis: a short overview of latest developments. J Liq Chromatogr Relat Technol 38(3):390–403

    Article  CAS  Google Scholar 

  8. Denoroy L, Zimmer L, Renaud B, Parrot S (2013) Ultra high performance liquid chromatography as a tool for the discovery and the analysis of biomarkers of diseases: a review. J Chromatogr B 927:37–53

    Article  CAS  Google Scholar 

  9. Pendharkar N, Gajbhiye A, Taunk K, RoyChoudhury S, Dhali S, Seal S, Mane A, Abhang S, Santra MK, Chaudhury K, Rapole S (2016) Quantitative tissue proteomic investigation of invasive ductal carcinoma of breast with luminal B HER2 positive and HER2 enriched subtypes towards potential diagnostic and therapeutic biomarkers. J Proteomics 132:112–130

    Article  CAS  PubMed  Google Scholar 

  10. Schubert KO, Föcking M, Cotter DR (2015) Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res 167(1–3):64–72

    Article  PubMed  Google Scholar 

  11. Casanova-Salas I, Masiá E, Armiñán A, Calatrava A, Mancarella C, Rubio-Briones J, Scotlandi K, Vicent MJ, López-Guerrero JA (2015) MiR-187 targets the androgen-regulated gene ALDH1A3 in prostate cancer. PLoS One 10(5) art. no. e0125576

    Google Scholar 

  12. Davalieva K, Kostovska IM, Kiprijanovska S, Markoska K, Kubelka-Sabit K, Filipovski V, Stavridis S, Stankov O, Komina S, Petrusevska G, Polenakovic M (2015) Proteomics analysis of malignant and benign prostate tissue by 2D DIGE/MS reveals new insights into proteins involved in prostate cancer. Prostate 75(14):1586–1600

    Article  CAS  PubMed  Google Scholar 

  13. Juste C, Kreil DP, Beauvallet C, Guillot A, Vaca S, Carapito C, Mondot S, Sykacek P, Sokol H, Blon F, Lepercq P, Levenez F, Valot B, Carré W, Loux V, Pons N, David O, Schaeffer B, Lepage P, Martin P, Monnet V, Seksik P, Beaugerie L, Ehrlich SD, Gibrat J-F, Van Dorsselaer A, Doré J (2014) Bacterial protein signals are associated with Crohn's disease. Gut 63(10):1566–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu J-Y, Cheng C-C, Wang J-Y, Wu D-C, Hsieh J-S, Lee S-C, Wang W-M (2014) Discovery of tumor markers for gastric cancer by proteomics. PLoS One 9(1), art. no. e84158

    Google Scholar 

  15. Gilabert M, Launay S, Ginestier C, Bertucci F, Audebert S, Pophillat M, Toiron Y, Baudelet E, Finetti P, Noguchi T, Sobol H, Birnbaum D, Borg J-P, Charafe-Jauffret E, Gonçalves A (2014) Poly(ADP-Ribose) polymerase 1 (PARP1) overexpression in human breast cancer stem cells and resistance to olaparib. PLoS One 9(8), art. no. e104302

    Google Scholar 

  16. Timms JF, Arslan-Low E, Kabir M, Worthington J, Camuzeaux S, Sinclair J, Szaub J, Afrough B, Podust VN, Fourkala E-O, Cubizolles M, Kronenberg F, Fung ET, Gentry-Maharaj A, Menon U, Jacobs I (2014) Discovery of serum biomarkers of ovarian cancer using complementary proteomic profiling strategies. Proteomics Clin Appl 8(11–12):982–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van den Bergh G, Arckens L (2003) Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol 15:38–43

    Article  CAS  Google Scholar 

  18. Tonge R, Shaw J, Middleton B, Rowlinson R et al (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    Article  CAS  PubMed  Google Scholar 

  19. Viswanathan S, Unlu M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1:1351–1358

    Article  CAS  PubMed  Google Scholar 

  20. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  CAS  PubMed  Google Scholar 

  21. Shaw J, Rowlinson R, Nickson J, Stone T et al (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3:1181–1195

    Article  CAS  PubMed  Google Scholar 

  22. Karp NA, McCormick PS, Russell MR, Lilley KS (2007) Experimental and statistical considerations to avoid false conclusions in proteomics studies using differential in-gel electrophoresis. Mol Cell Proteomics 6:1354–1364

    Article  CAS  PubMed  Google Scholar 

  23. Veeser S, Dunn MJ, Yang GZ (2001) Multiresolution image registration for two-dimensional gel electrophoresis. Proteomics 1:856–870

    Article  CAS  PubMed  Google Scholar 

  24. Dowsey AW, English J, Pennington K, Cotter D et al (2006) Examination of 2-DE in the human proteome organisation brain proteome project pilot studies with the new RAIN gel matching technique. Proteomics 6:5030–5047

    Article  CAS  PubMed  Google Scholar 

  25. Dowsey AW, Dunn MJ, Yang GZ (2008) Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline. Bioinformatics 24:950–957

    Article  CAS  PubMed  Google Scholar 

  26. Rye M, Fargestad EM (2012) Preprocessing of electrophoretic images in 2-DE analysis. Chemom Intel Lab Syst 117:70–79

    Article  CAS  Google Scholar 

  27. Moller B, Posch S (2009) Robust features for 2-DE gel image registration. Electrophoresis 30:4137–4148

    Article  PubMed  CAS  Google Scholar 

  28. Srinark T, Kambhamettu C (2008) An image analysis suite for spot detection and spot matching in two-dimensional electrophoresis gels. Electrophoresis 29:706–715

    Article  CAS  PubMed  Google Scholar 

  29. Liu YS, Chen SY, Liu RS, Duh DJ, Chao YT, Tsai YC, Hsieh JS (2009) Spot detection for a 2-DE gel image using a slice tree with confidence evaluation. Math Comput Modell 50:1–14

    Article  Google Scholar 

  30. Cutler P, Heald G, White IR, Ruan J (2003) A novel approach to spot detection for two-dimensional gel electrophoresis images using pixel value collection. Proteomics 3:392–401

    Article  CAS  PubMed  Google Scholar 

  31. Kazhiyur-Mannar R, Smiraglia DJ, Plass C, Wenger R (2006) Contour area filtering of two-dimensional electrophoresis images. Med Image Anal 10:353–365

    Article  PubMed  Google Scholar 

  32. Wu Y, Lemkin PF, Upton K (1993) A fast spot segmentation algorithm for two-dimensional gel electrophoresis analysis. Electrophoresis 14:1351–1356

    Article  CAS  PubMed  Google Scholar 

  33. Bettens E, Scheunders P, VanDyck D, Moens L, VanOsta P (1997) Computer analysis of two-dimensional electrophoresis gels: a new segmentation and modeling algorithm. Electrophoresis 18:792–798

    Article  CAS  PubMed  Google Scholar 

  34. Tsakanikas P, Manolakos ES (2011) Protein spot detection and quantification in 2-DE gel images using machine-learning methods. Proteomics 11:2038–2050

    Article  CAS  PubMed  Google Scholar 

  35. Langella O, Zivy M (2008) A method based on bead flows for spot detection on 2-D gel images. Proteomics 8:4914–4918

    Article  CAS  PubMed  Google Scholar 

  36. Dowsey AW, Dunn MJ, Yang GZ (2003) The role of bioinformatics in two-dimensional gel electrophoresis. Proteomics 3:1567–1596

    Article  CAS  PubMed  Google Scholar 

  37. Conradsen K, Pedersen J (1992) Analysis of 2dimensional electrophoretic gels. Biometrics 48:1273–1287

    Article  Google Scholar 

  38. Woodward AM, Rowland JJ, Kell DB (2004) Fast automatic registration of images using the phase of a complex wavelet transform: application to proteome gels. Analyst 129:542–552

    Article  CAS  PubMed  Google Scholar 

  39. Luhn S, Berth M, Hecker M, Bernhardt J (2003) Using standard positions and image fusion to create proteome maps from collections of two-dimensional gel electrophoresis images. Proteomics 3:1117–1127

    Article  CAS  PubMed  Google Scholar 

  40. Schultz J, Gottlieb DM, Petersen M, Nesic L, Jacobsen S, Sondergaard I (2004) Explorative data analysis of two-dimensional electrophoresis gels. Electrophoresis 25:502–511

    Article  CAS  PubMed  Google Scholar 

  41. Salmi J, Aittokallio T, Westerholm J, Griese M, Rosengren A, Nyman TA, Lahesmaa R, Nevalainen O (2002) Hierarchical grid transformation for image warping in the analysis of two dimensional electrophoresis gels. Proteomics 2:1504–1515

    Article  CAS  PubMed  Google Scholar 

  42. Panek J, Vohradsky J (1999) Point pattern matching in the analysis of two-dimensional gel electropherograms. Electrophoresis 20:3483–3491

    Article  CAS  PubMed  Google Scholar 

  43. Kaczmarek K, Walczak B, de Jong S, Vandeginste BG (2002) Feature based fuzzy matching of 2D gel electrophoresis images. J Chem Inf Comput Sci 42:1431–1442

    Article  CAS  PubMed  Google Scholar 

  44. Gustafsson JS, Blomberg A, Rudemo M (2002) Warping two-dimensional electrophoresis gel images to correct for geometric distortions of the spot pattern. Electrophoresis 23:1731–1744

    Article  CAS  PubMed  Google Scholar 

  45. Smilansky Z (2001) Automatic registration for images of two-dimensional protein gels. Electrophoresis 22:1616–1626

    Article  CAS  PubMed  Google Scholar 

  46. Sorzano CO, Arganda-Carreras I, Thevenaz P, Beloso A, Morales G, Valdes I, Perez-Garcia C, Castillo C, Garrido E, Unser M (2008) Elastic image registration of 2-D gels for differential and repeatability studies. Proteomics 8:62–65

    Article  CAS  PubMed  Google Scholar 

  47. Daszykowski M, Faergestad EM, Grove H, Martens H, Walczak B (2009) Matching 2D gel electrophoresis images with Matlab ‘image processing toolbox’. Chemom Intel Lab Syst 96:188–195

    Article  CAS  Google Scholar 

  48. Potra FA, Liu X, Seillier-Moiseiwitsch F, Roy A, Hang Y, Marten MR, Raman B, Whisnant C (2006) Protein image alignment via piecewise affine transformations. J Comput Biol 13:614–630

    Article  CAS  PubMed  Google Scholar 

  49. Rogers M, Graham J (2007) Robust and accurate registration of 2-D electrophoresis gels using point-matching. IEEE Trans Image Process 16:624–635

    Article  PubMed  Google Scholar 

  50. Noma A, Pardo A, Cesar RM (2011) Structural matching of 2D electrophoresis gels using deformed graphs. Pattern Recogn Lett 32:3–11

    Article  Google Scholar 

  51. Xin HM, Zhu Y (2009) Multiple information based spot matching method for 2-DE images. Electrophoresis 30:2477–2480

    Article  CAS  PubMed  Google Scholar 

  52. Marengo E, Robotti E, Cecconi D, Hamdan M, Scarpa A, Righetti PG (2004) Identification of the regulatory proteins in human pancreatic cancers treated with Trichostatin-A by 2DPAGE maps and multivariate statistical analysis. Anal Bioanal Chem 379(7–8):992–1003

    CAS  PubMed  Google Scholar 

  53. Marengo E, Robotti E, Bobba M, Liparota MC, Rustichelli C, Zamo A, Chilosi M, Righetti PG (2006) Multivariate statistical tools applied to the characterisation of the proteomic profiles of two human lymphoma cell lines by two-dimensional gel electrophoresis. Electrophoresis 27(2):484–494

    Article  CAS  PubMed  Google Scholar 

  54. Marengo E, Robotti E, Bobba M, Milli A, Campostrini N, Righetti SC, Cecconi D, Righetti PG (2008) Application of partial least squares discriminant analysis and variable selection procedures: a 2D-PAGE proteomic study. Anal Bioanal Chem 390(5):1327–1342

    Article  CAS  PubMed  Google Scholar 

  55. Robotti E, Demartini M, Gosetti F, Calabrese G, Marengo E (2011) Development of a classification and ranking method for the identification of possible biomarkers in two-dimensional gel-electrophoresis based on principal component analysis and variable selection procedures. Mol Biosyst 7(3):677–686

    Article  CAS  PubMed  Google Scholar 

  56. Negri AS, Robotti E, Prinsi B, Espen L, Marengo E (2011) Proteins involved in biotic and abiotic stress responses as the most significant biomarkers in the ripening of pinot noir skins. Funct Integr Genomics 11(2):341–355

    Article  CAS  PubMed  Google Scholar 

  57. Polati R, Menini M, Robotti E, Millioni R, Marengo E, Novelli E, Balzan S, Cecconi D (2012) Proteomic changes involved in tenderization of bovine Longissimus dorsi muscle during prolonged aging. Food Chem 135(3):2052–2069

    Article  CAS  PubMed  Google Scholar 

  58. Marengo E, Robotti E, Bobba M (2008) 2DPAGE maps analysis. In: Vlahou A (ed) Clinical proteomics: methods and protocols, Methods in molecular biology, vol vol 428. Humana, Totowa, NJ, pp 291–325

    Chapter  Google Scholar 

  59. Marengo E, Robotti E, Righetti PG, Campostrini N, Pascali J, Ponzoni M, Hamdan M, Astner H (2004) Study of proteomic changes associated with healthy and tumoral murine samples in neuroblastoma by principal component analysis and classification methods. Clin Chim Acta 345(1–2):55–67

    Article  CAS  PubMed  Google Scholar 

  60. Marengo E, Robotti E, Gianotti V, Righetti PG, Cecconi D, Domenici E (2003) A new integrated statistical approach to the diagnostic use of proteomic two-dimensional maps. Electrophoresis 24(1–2):225–236

    Article  CAS  PubMed  Google Scholar 

  61. Marengo E, Robotti E, Righetti PG, Antonucci F (2003) New approach based on fuzzy logic and principal component analysis for the classification of two-dimensional maps in health and disease. Application to lymphomas. J Chromatogr a 1004(1–2):13–28

    Article  CAS  PubMed  Google Scholar 

  62. Marengo E, Bobba M, Liparota MC, Robotti E, Righetti PG (2005) Use of legendre moments for the fast comparison of twodimensional polyacrylamide gel electrophoresis maps images. J Chromatogr A 1096(1–2):86–91

    Article  CAS  PubMed  Google Scholar 

  63. Marengo E, Cocchi M, Demartini M, Robotti E, Bobba M, Righetti PG (2011) Investigation of the applicability of Zernike moments to the classification of SDS 2D-PAGE maps. Anal Bioanal Chem 400(5):1419–1431

    Article  CAS  PubMed  Google Scholar 

  64. Marengo E, Robotti E, Bobba M, Demartini M, Righetti PG (2008) A new method for comparing 2D-PAGE maps based on the computation of Zernike moments and multivariate statistical tools. Anal Bioanal Chem 391(4):1163–1173

    Article  CAS  PubMed  Google Scholar 

  65. Carpentier S, Panis B, Swennen R, Lammertyn J (2008) Finding the significant markers: statistical analysis of proteomic data. In: Vlahou A (ed) Clinical proteomics, Methods in molecular biology, vol vol 428. Humana, Totowa, NJ, pp 327–347

    Chapter  Google Scholar 

  66. Jacobsen S, Grove H, Jensen KN, Sorensen HA, Jessen F, Hollung K, Uhlen AK, Jorgensen BM, Faergestad EM, Sondergaard I (2007) Multivariate analysis of 2-DE protein patterns—practical approaches. Electrophoresis 28:1289–1299

    Article  CAS  PubMed  Google Scholar 

  67. Faergestad EM, Rye MB, Nhek S, Hollung K, Grove H (2011) The use of chemometrics to Normalization for 2-DE and 2-D-DIGE analyse protein patterns from gel electrophoresis. Acta Chromatogr 23:1–40

    Article  CAS  Google Scholar 

  68. Grove H, Jorgensen BM, Jessen F, Sondergaard I, Jacobsen S, Hollung K, Indahl U, Faergestad EM (2008) Combination of statistical approaches for analysis of 2-DE data gives complementary results. J Proteome Res 7(12):5119–5124

    Article  CAS  PubMed  Google Scholar 

  69. Bandow JE, Baker JD, Berth M, Painter C, Sepulveda OJ, Clark KA, Kilty I, VanBogelen RA (2008) Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies—COPD biomarker discovery study. Proteomics 8:3030–3041

    Article  CAS  PubMed  Google Scholar 

  70. Rye MB, Faergestad EM, Alsberg BK (2008) A new method for assigning common spot boundaries for multiple gels in two dimensional gel electrophoresis. Electrophoresis 29:1359–1368

    Article  CAS  PubMed  Google Scholar 

  71. Clark BN, Gutstein HB (2008) The myth of automated, high-throughput two-dimensional gel analysis. Proteomics 8:1197–1203

    Article  CAS  PubMed  Google Scholar 

  72. Morris JS, Clark BN, Wei W, Gutstein HB (2010) Evaluating the performance of new approaches to spot quantification and differential expression in 2-dimensional gel electrophoresis studies. J Proteome Res 9:595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Faergestad EM, Rye M, Walczak B, Gidskehaug L, Wold JP, Grove H, Jia X, Hollung K, Indahl UG, Westad F, van den Berg F, Martens H (2007) Pixel-based analysis of multiple images for the identification of changes: a novel approach applied to unravel proteome patterns [corrected] of 2-D electrophoresis gel images. Proteomics 7:3450–3461

    Article  CAS  PubMed  Google Scholar 

  74. Rye MB, Faergestad EM, Martens H, Wold JP, Alsberg BK (2008) An improved pixel-based approach for analyzing images in twodimensional gel electrophoresis. Electrophoresis 29:1382–1393

    Article  CAS  PubMed  Google Scholar 

  75. Van Belle W, Anensen N, Haaland I, Bruserud O, Hogda KA, Gjertsen BT (2006) Correlation analysis of two-dimensional gel electrophoretic protein patterns and biological variables. BMC Bioinformatics 7:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Daszykowski M, Stanimirova I, BodzonKulakowska A, Silberring J, Lubec G, Walczak B (2007) Start-to-end processing of twodimensional gel electrophoretic images. J Chromatogr A 1158:306–317

    Article  CAS  PubMed  Google Scholar 

  77. Cecconi D (2016) Comparative evaluation of software features and performances. Methods Mol Biol 1384:69–78

    Article  CAS  PubMed  Google Scholar 

  78. Morris JS, Clark BN, Gutstein HB (2008) Pinnacle: a fast, automatic and accurate method for detecting andquantifying protein spots in 2-dimensional gel electrophoresis data. Bioinformatics 24(4):529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu Y, Zhang L (2011) Comparison of two academic software packages for analyzing two-dimensional gel images. J Bioinform Comput Biol 9(6):775–794

    Article  PubMed  Google Scholar 

  80. Kang Y, Techanukul T, Mantalaris A, Nagy JM (2009) Comparison of three commercially available DIGE analysis software packages: minimal user intervention in gel-based proteomics. J Proteome Res 8:1077–1084

    Article  CAS  PubMed  Google Scholar 

  81. McNamara LE, Kantawong FA, Dalby MJ, Riehle MO, Burchmore R (2011) Preventing and troubleshooting artefacts in saturation labelled fluorescence 2-D difference gel electrophoresis (saturation DiGE). Proteomics 11:4610–4621

    Article  CAS  PubMed  Google Scholar 

  82. Rogers M, Graham J, Tonge RP (2003) Using statistical image models for objective evaluation of spot detection in two-dimensional gels. Proteomics 3(6):879–886

    Article  CAS  PubMed  Google Scholar 

  83. Tsakanikas P, Manolakos ES (2009) Improving 2-DE gel image denoising using contourlets. Proteomics 9(15):3877–3888

    Article  CAS  PubMed  Google Scholar 

  84. Tsakanikas P, Manolakos I (2007) Effective denoising of 2D gel proteomics images using contourlets. Image Processing, 2007, ICIP 2007. IEEE International Conference on 2, pp. 1–22

    Google Scholar 

  85. Marengo E, Robotti E, Antonucci F et al (2005) Numerical approaches for quantitative analysis of two-dimensional maps: a review of commercial software and home-made systems. Proteomics 5:654–666

    Article  CAS  PubMed  Google Scholar 

  86. Appel RD, Palagi PM, Walther D et al (1997) Melanie II–a third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface. Electrophoresis 18:2724–2734

    Article  CAS  PubMed  Google Scholar 

  87. Kaczmarek K, Walczak B, deJong S et al (2004) Preprocessing of two-dimensional gel electrophoresis images. Proteomics 4:2377–2389

    Article  CAS  PubMed  Google Scholar 

  88. Appel RD, Vargas JR, Palagi PM et al (1997) Melanie II–a third-generation software package for analysis of two-dimensional electrophoresis images: II. Algorithms. Electrophoresis 18:2735–2748

    Article  CAS  PubMed  Google Scholar 

  89. Cannistraci CV, Montevecchi FM, Alessio M (2009) Median-modified Wiener filter provides efficient denoising, preserving spot edge and morphology in 2-DE image processing. Proteomics 9:4908–4919

    Article  CAS  PubMed  Google Scholar 

  90. Robotti E, Marengo E, Quasso F (2016) Image pretreatment tools II: normalization techniques for 2-DE and 2-D DIGE. Methods Mol Biol 1384:91–107

    Article  CAS  PubMed  Google Scholar 

  91. Silva E, O’Gorman M, Becker S, Auer G, Eklund A, Grunewald J, Wheelock AM (2010) In the eye of the beholder: does the master see the SameSpots as the novice? J Proteome Res 9(3):1522–1532

    Article  CAS  PubMed  Google Scholar 

  92. Krogh M, Liu Y, Waldemarson S, Valastro B, James P (2007) Analysis of DIGE data using a linear mixed model allowing for proteinspecific dye effects. Proteomics 7:4235–4244

    Article  CAS  PubMed  Google Scholar 

  93. Kreil DP, Karp NA, Lilley KS (2004) DNA microarray normalization methods can remove bias from differential protein expression analysis of 2D difference gel electrophoresis results. Bioinformatics 20:2026–2034

    Article  CAS  PubMed  Google Scholar 

  94. Engelen K, Sifrim A, Van de Plas B, Laukens K, Arckens L, Marchal K (2010) Alternative experimental design with an applied normalization scheme can improve statistical power in 2D-DIGE experiments. J Proteome Res 9:4919–4926

    Article  CAS  PubMed  Google Scholar 

  95. Kultima K, Scholz B, Alm H, Skold K, Svensson M, Crossman AR, Bezard E, Andren PE, Lonnstedt I (2006) Normalization and expression changes in predefined sets of proteins using 2D gel electrophoresis: a proteomic study of L-DOPA induced dyskinesia in an animal model of Parkinson’s disease using DIGE. BMC Bioinformatics 7(1):475

    Article  PubMed  PubMed Central  Google Scholar 

  96. Keeping AJ, Collins RA (2011) Data variance and statistical significance in 2D-gel electrophoresis and DIGE experiments: comparison of the effects of normalization methods. J Proteome Res 10:1353–1360

    Article  CAS  PubMed  Google Scholar 

  97. Jacoby WG (2000) Loess: a nonparametric, graphical tool for depicting relationships between variables. Elect Stud 19:577–613

    Article  Google Scholar 

  98. Fodor IK, Nelson DO, Alegria-Hartman M, Robbins K, Langlois RG, Turteltaub KW, Corzett TH, McCutchen-Maloney SL (2005) Statistical challenges in the analysis of twodimensional difference gel electrophoresis experiments using DeCyder(TM). Bioinformatics 21:3733–3740

    Article  CAS  PubMed  Google Scholar 

  99. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829–836

    Article  Google Scholar 

  101. Cleveland WS, Devlin SJ (1988) Locallyweighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610

    Article  Google Scholar 

  102. Berger JA, Hautaniemi S, Jarvinen AK, Edgren H, Mitra SK, Astola J (2004) Optimized LOWESS normalization parameter selection for DNA microarray data. BMC Bioinformatics 5:194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3

    Article  Google Scholar 

  104. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  105. Pleissner KP, Hoffmann F, Kriegel K, Wenk C, Wegner S, Sahlstrom A, Oswald H, Alt H, Fleck E (1999) New algorithmic approaches to protein spot detection and pattern matching in two-dimensional electrophoresis gel databases. Electrophoresis 20:755–765

    Article  CAS  PubMed  Google Scholar 

  106. Berth M, Moser FM, Kolbe M, Bernhardt J (2007) The state of the art in the analysis of two-dimensional gel electrophoresis images. Appl Microbiol Biotechnol 76:1223–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rogers M, Graham J, Tonge RP (2003) Statistical models of shape for the analysis of protein spots in two-dimensional electrophoresis gel images. Proteomics 3:887–896

    Article  CAS  PubMed  Google Scholar 

  108. Rohr K, Cathier P, Worz S (2004) Elastic registration of electrophoresis images using intensity information and point landmarks. Pattern Recogn 37:1035–1048

    Article  Google Scholar 

  109. Shi G, Jiang T, Zhu W, Liu B, Zhao H (2007) Alignment of two-dimensional electrophoresis gels. Biochem Biophys Res Commun 357:427–432

    Article  CAS  PubMed  Google Scholar 

  110. Raman B, Cheung A, Marten MR (2002) Quantitative comparison and evaluation of two commercially available, two-dimensional electrophoresis image analysis software packages, Z3 and Melanie. Electrophoresis 23:2194–2202

    Article  CAS  PubMed  Google Scholar 

  111. Lemkin PF (1997) Comparing twodimensional gels across the internet. Electrophoresis 18(3–4):461–470

    Article  CAS  PubMed  Google Scholar 

  112. Efrat A, Hoffmann F, Kriegel K, Schultz C, Wenk C (2002) Geometric algorithms for the analysis of 2D-electrophoresis gels. J Comput Biol 9(2):299–316

    Article  CAS  PubMed  Google Scholar 

  113. Baker M, Busse H, Vogt M (2000) An automatic registration and segmentation algorithm for multiple electrophoresis images. In: Hanson KM (ed) Medical Imaging 2000—Image Processing (MI’2000), Proceedings of the SPIE International Symposium, vol 3979, 14–17 Feb 2000, San Diego, CA, pp 426–436

    Google Scholar 

  114. Josso B, Zindy E, Aldemir H (2000) Automatic 2D gel registration using distance minimisation of image morphing. Proceedings of the IEEE International Conference on Information Visualization (IV’00), London, England, 19–21 Jul 2000, pp 357–361

    Google Scholar 

  115. Worz S, Winz M-L, Rohr K (2009) Geometric alignment of 2D gel electrophoresis images. Methods Inf Med 48:320–323

    Article  CAS  PubMed  Google Scholar 

  116. Lemkin P, Lipkin LE (1981) GELLAB: a computer system for 2D gel electrophoresis analysis. II. Pairing spots. Comput Biomed Res 14:355–380

    Article  CAS  PubMed  Google Scholar 

  117. Bookstein FL (1989) Principal warps: thinplate splines and the decomposition of deformation. IEEE Trans Pattern Anal Mach Intell 11:567–585

    Article  Google Scholar 

  118. Marengo E, Cocchi M, Demartini M, Robotti E, Cecconi D, Calabrese G (2012) GENOCOP algorithm and hierarchical grid transformation for image warping of two dimensional gel eletrophoretic maps. Mol Biosyst 8(4):975–984

    Article  CAS  PubMed  Google Scholar 

  119. Robotti E, Marengo E, Demartini M (2016) GENOCOP algorithm and hierarchical grid transformation for image warping of two-dimensional gel electrophoretic maps. Methods Mol Biol 1384:165–184

    Article  CAS  PubMed  Google Scholar 

  120. Glasbey CA, Mardia KV (2001) A penalized likelihood approach to image warping. J R Statist Soc B 63:465–514

    Article  Google Scholar 

  121. Rodriguez A, Fernandez-Lozano C, Dorado J, Rabun ˜a JR (2014) Two-dimensional gel electrophoresis image registration using block-matching techniques and deformation models. Anal Biochem 454:53–59

    Article  CAS  PubMed  Google Scholar 

  122. Lin D-T (2010) Autonomous sub-image matching for two-dimensional electrophoresis gels using MaxRST algorithm. Image Vis Comput 28:1267–1279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Robotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Robotti, E., Marengo, E. (2018). 2D-DIGE and Fluorescence Image Analysis. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 1664. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7268-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7268-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7267-8

  • Online ISBN: 978-1-4939-7268-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics