Skip to main content

Correlative In-Resin Super-Resolution Fluorescence and Electron Microscopy of Cultured Cells

  • Protocol
Book cover Super-Resolution Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1663))

Abstract

Correlative super-resolution light and electron microscopy (super-resolution CLEM) is a powerful and emerging tool in biological research. The practical realization of these two very different microscopy techniques with their individual requirements remains a challenging task. There is a broad range of approaches to choose from, each with their own advantages and limitations. Here, we present a detailed protocol for in-resin super-resolution CLEM of high-pressure frozen and freeze substituted cultured cells. The protocol makes use of a strategy to preserve the fluorescence and photo-switching capabilities of standard fluorescent proteins, such as GFP and YFP, to enable single-molecule localization microscopy (SMLM) in-resin sections followed by transmission electron microscopy (TEM) imaging. This results in a fivefold improvement in resolution in the fluorescence image and a more precise correlation of the distribution of fluorescently labeled molecules with EM ultrastructure compared with conventional CLEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller-Reichert T, Verkade P (eds) (2014) Correlative light and electron microscopy II. Academic Press, Amsterdam

    Google Scholar 

  2. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  3. Watanabe S, Punge A, Hollopeter G, Willig KI, Hobson RJ, Davis MW, Hell SW, Jorgensen EM (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1):80–84

    Article  CAS  PubMed  Google Scholar 

  4. Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF (2012) Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci U S A 109(16):6136–6141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Löschberger A, Franke C, Krohne G, van de Linde S, Sauer M (2014) Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci 127(20):4351–4355

    Article  PubMed  Google Scholar 

  6. Segala MGP, Sun MG, Shtengel G, Viswanathan S, Baird MA, Macklin JJ, Patel R, Allen JR, Howe ES, Piszczek G (2015) Fixation-resistant photoactivatable fluorescent proteins for correlative light and electron microscopy. Nat Methods 12(3):215

    Article  Google Scholar 

  7. Lidke DS, Lidke KA (2012) Advances in high-resolution imaging–techniques for three-dimensional imaging of cellular structures. J Cell Sci 125(11):2571–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Boer P, Hoogenboom JP, Giepmans BN (2015) Correlated light and electron microscopy: ultrastructure lights up! Nat Methods 12(6):503–513

    Article  PubMed  Google Scholar 

  9. Wolff G, Hagen C, Grünewald K, Kaufmann R (2016) Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol Cell. doi:10.1111/boc.201600008

  10. Johnson E, Seiradake E, Jones EY, Davis I, Grünewald K, Kaufmann R (2015) Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Sci Rep 5. doi:10.1038/srep09583

  11. McDonald K, Schwarz H, Müller-Reichert T, Webb R, Buser C, Morphew M (2010) “Tips and tricks” for high-pressure freezing of model systems. Methods Cell Biol 96:671–693

    Article  PubMed  Google Scholar 

  12. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17(1):208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hawes P, Netherton C, Mueller M, Wileman T, Monaghan P (2007) Rapid freeze-substitution preserves membranes in high-pressure frozen tissue culture cells. J Microsc 226(2):182–189

    Article  CAS  PubMed  Google Scholar 

  14. Simionescu N, Simionescu M (1976) Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol 70(3):608–621

    Article  CAS  PubMed  Google Scholar 

  15. Reipert S, Fischer I, Wiche G (2004) High-pressure freezing of epithelial cells on sapphire coverslips. J Microsc 213(1):81–85

    Article  CAS  PubMed  Google Scholar 

  16. Jimenez N, Humbel B, Van Donselaar E, Verkleij A, Burger K (2006) Aclar discs: a versatile substrate for routine high-pressure freezing of mammalian cell monolayers. J Microsc 221(3):216–223

    Article  CAS  PubMed  Google Scholar 

  17. Morphew M, McIntosh J (2003) The use of filter membranes for high-pressure freezing of cell monolayers. J Microsc 212(1):21–25

    Article  CAS  PubMed  Google Scholar 

  18. Vanhecke D, Zuber B, Brugger S, Studer D (2012) Safe high-pressure freezing of infectious micro-organisms. J Microsc 246(2):124–128

    Article  CAS  PubMed  Google Scholar 

  19. Schwarz H, Humbel BM (2014) Correlative light and electron microscopy using immunolabeled sections. In: Electron microscopy: methods and protocols. Springer, New York, pp 559–592

    Chapter  Google Scholar 

  20. Grüll F, Kirchgessner M, Kaufmann R, Hausmann M, Kebschull U (2011) Accelerating image analysis for localization microscopy with FPGAs. In: 2011 21st international conference on field programmable logic and applications, IEEE, p 1–5

    Google Scholar 

Download references

Acknowledgments

We are grateful to Elena Seiradake and Marek Drozdz for culture and transfection of cells, and to Ilan Davis, Ian Dobbie, Kay Grünewald, Christoph Hagen, E. Yvonne Jones, Richard Parton, and Jordan Raff for their continuous support and constructive discussions. This work was supported by Wellcome Trust Senior Research Fellowships (090895/Z/09/Z; 096144/Z/11/Z), the Wellcome Trust core award to the Wellcome Trust Centre for Human Genetics (090532/Z/09/Z), a Cancer Research UK programme grant (A10976) and the Micron Strategic Award from the Wellcome Trust (091911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Kaufmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Johnson, E., Kaufmann, R. (2017). Correlative In-Resin Super-Resolution Fluorescence and Electron Microscopy of Cultured Cells. In: Erfle, H. (eds) Super-Resolution Microscopy. Methods in Molecular Biology, vol 1663. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7265-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7265-4_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7264-7

  • Online ISBN: 978-1-4939-7265-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics