Advertisement

Using Microscopy Tools to Visualize Autophagosomal Structures in Plant Cells

  • Weili Lin
  • Xiaohong ZhuangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1662)

Abstract

Macroautophagy (hereafter as autophagy), is a metabolic process for sequestration of cytoplasmic cargos into a double membrane structure named as autophagosome. In plants, autophagy is required for nutrition mobilization/recycling and clearance of protein aggregates or damaged organelles during starvation or other unfavorable conditions, as well as for plant immunity during pathogen infection. Multiple experimental approaches have been developed to elucidate the autophagic activity. To facilitate further investigations on the potential involvement of autophagy in protein secretion process in plant cells, here we describe detailed protocols to measure the autophagic activity in model plant Arabidopsis. Using the autophagosome marker ATG8 and a novel autophagic regulator SH3P2 as examples, we illustrate the major cell biology tools and methods using microscopy to analyze the autophagosomal structures in plant cells, including BTH-induced autophagic response, transient expression and colocalization analysis, as well as immuno-EM labeling.

Key words

Autophagy Autophagosome BTH Transient expression Immuno-EM labeling 

Notes

Acknowledgments

This work was supported by grants from the Research Grants Council of Hong Kong (CUHK465112, 466313, 14130716, 14102417, CUHK2/CRF/11G, C4011-14R, C4012-16E, and AoE/M-05/12), Germany/Hong Kong Joint Research Scheme, CUHK Research Committee Direct Grant, NSFC (31670179, 31270226 and 31470294), CAS-Croucher Joint Lab Scheme, and Shenzhen Peacock Project (KQTD201101).

References

  1. 1.
    Noda NN, Inagaki F (2015) Mechanisms of autophagy. Annu Rev Biophys 44:101–122. doi: 10.1146/annurev-biophys-060414-034248 CrossRefPubMedGoogle Scholar
  2. 2.
    Bruns C, McCaffery JM, Curwin AJ, Duran JM, Malhotra V (2011) Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J Cell Biol 195(6):979–992. doi: 10.1083/jcb.201106098 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J 30(23):4701–4711. doi: 10.1038/emboj.2011.398 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW (2011) Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 21(5):966–974. doi: 10.1016/j.devcel.2011.08.016 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Son SM, Cha MY, Choi H, Kang S, Choi H, Lee MS, Park SA, Mook-Jung I (2016) Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy 12(5):784–800. doi: 10.1080/15548627.2016.1159375 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kimura T, Jia J, Kumar S, Choi SW, Gu Y, Mudd M, Dupont N, Jiang S, Peters R, Farzam F, Jain A, Lidke KA, Adams CM, Johansen T, Deretic V (2017) Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J 36(1):42–60. doi: 10.15252/embj.201695081 CrossRefPubMedGoogle Scholar
  7. 7.
    Zhuang XH, Wang H, Lam SK, Gao CJ, Wang XF, Cai Y, Jiang LW (2013) A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell 25(11):4596–4615. doi: 10.1105/tpc.113.118307 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu YM, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63:215–237CrossRefPubMedGoogle Scholar
  9. 9.
    Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21(9):2914–2927. doi: 10.1105/tpc.109.068635 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16(11):2967–2983. doi: 10.1105/tpc.104.025395 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhuang X, Chung KP, Cui Y, Lin W, Gao C, Kang BH, Jiang L (2017) ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc Natl Acad Sci U S A 114(3):E426–E435. doi: 10.1073/pnas.1616299114 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Miao YS, Jiang LW (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat Protoc 2(10):2348–2353. doi: 10.1038/nprot.2007.360 CrossRefPubMedGoogle Scholar
  13. 13.
    Gao CJ, Zhuang XH, Cui Y, Fu X, He YL, Zhao Q, Zeng YL, Shen JB, Luo M, Jiang LW (2015) Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proc Natl Acad Sci U S A 112(6):1886–1891. doi: 10.1073/pnas.1421271112 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rose TL, Bonneau L, Der C, Marty-Mazars D, Marty F (2006) Starvation-induced expression of autophagy-related genes in Arabidopsis. Biol Cell 98(1):53–67. doi: 10.1042/Bc20040516 CrossRefPubMedGoogle Scholar
  15. 15.
    Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y (2006) AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 47(12):1641–1652. doi: 10.1093/pcp/pcl031 CrossRefPubMedGoogle Scholar
  16. 16.
    Lam SK, Siu CL, Hillmer S, Jang S, An GH, Robinson DG, Jiang LW (2007) Rice SCAMP1 defines clathrin-coated, trans-Golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19(1):296–319. doi: 10.1105/tpc.106.045708 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ritzenthaler C, Nebenfuhr A, Movafeghi A, Stussi-Garaud C, Behnia L, Pimpl P, Staehelin LA, Robinson DG (2002) Reevaluation of the effects of brefeldin A on plant cells using tobacco bright yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14(1):237–261. doi: 10.1105/tpc.010237 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tse YC, Mo BX, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang LW (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16(3):672–693. doi: 10.1105/tpc.019703 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bozzola JJ, Russell LD (1999) Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning, Sudbury, MAGoogle Scholar
  20. 20.
    Hagler HK (2007) Ultramicrotomy for biological electron microscopy. Methods Mol Biol 369:67–96CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life SciencesThe Chinese University of Hong KongShatin, New Territories, Hong KongChina

Personalised recommendations