An Overview of Protein Secretion in Plant Cells

  • Kin Pan ChungEmail author
  • Yonglun ZengEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1662)


The delivery of proteins to the apoplast or protein secretion is an essential process in plant cells. Proteins are secreted to perform various biological functions such as cell wall modification and defense response. Conserved from yeast to mammals, both conventional and unconventional protein secretion pathways have been demonstrated in plants. In the conventional protein secretion pathway, secretory proteins with an N-terminal signal peptide are transported to the extracellular region via the endoplasmic reticulum–Golgi apparatus and the subsequent endomembrane system. By contrast, multiple unconventional protein secretion pathways are proposed to mediate the secretion of the leaderless secretory proteins. In this review, we summarize the recent findings and provide a comprehensive overview of protein secretion pathways in plant cells.

Key words

Conventional protein secretion Unconventional protein secretion Coat protein complex I Coat protein complex II Exocyst-positive organelle 



This work was supported by grants from the Research Grants Council of Hong Kong (CUHK465112, 466313, 14130716, 14102417, CUHK2/CRF/11G, C4011-14R, C4012-16E, and AoE/M-05/12), Germany/Hong Kong Joint Research Scheme (G-CUHK402/15), CUHK Research Committee Direct Grant, NSFC (31270226 and 31470294, 31670179), CAS-Croucher Joint Lab Scheme, and Shenzhen Peacock Project (KQTD201101).


  1. 1.
    Liu YD, Li JM (2014) Endoplasmic reticulum-mediated protein quality control in Arabidopsis. Front Plant Sci 5:162. doi: 10.3389/fpls.2014.00162 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Huttner S, Strasser R (2012) Endoplasmic reticulum-associated degradation of glycoproteins in plants. Front Plant Sci 3:67. doi: 10.3389/fpls.2012.00067 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Howell SH (2013) Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol 64:477–499. doi: 10.1146/annurev-arplant-050312-120053 CrossRefPubMedGoogle Scholar
  4. 4.
    Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21(1):205–215. doi: 10.1016/0092-8674(80)90128-2 CrossRefPubMedGoogle Scholar
  5. 5.
    Novick P, Ferro S, Schekman R (1981) Order of events in the yeast secretory pathway. Cell 25(2):461–469. doi: 10.1016/0092-8674(81)90064-7 CrossRefPubMedGoogle Scholar
  6. 6.
    Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) Copii - a membrane coat formed by sec proteins that drive vesicle budding from the endoplasmic-reticulum. Cell 77(6):895–907. doi: 10.1016/0092-8674(94)90138-4 CrossRefPubMedGoogle Scholar
  7. 7.
    Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116(2):153–166. doi: 10.1016/S0092-8674(03)01079-1 CrossRefPubMedGoogle Scholar
  8. 8.
    Barlowe C, Denfert C, Schekman R (1993) Purification and characterization of Sar1p, a small Gtp-Binding protein required for transport vesicle formation from the endoplasmic-reticulum. J Biol Chem 268(2):873–879PubMedGoogle Scholar
  9. 9.
    Kuge O, Dascher C, Orci L, Rowe T, Amherdt M, Plutner H, Ravazzola M, Tanigawa G, Rothman JE, Balch WE (1994) Sar1 promotes vesicle budding from the endoplasmic-reticulum but not Golgi compartments. J Cell Biol 125(1):51–65. doi: 10.1083/jcb.125.1.51 CrossRefPubMedGoogle Scholar
  10. 10.
    Nakano A, Muramatsu M (1989) A novel Gtp-Binding protein, Sar1p, is involved in transport from the endoplasmic-reticulum to the Golgi-apparatus. J Cell Biol 109(6):2677–2691. doi: 10.1083/jcb.109.6.2677 CrossRefPubMedGoogle Scholar
  11. 11.
    Oka T, Nishikawa S, Nakano A (1991) Reconstitution of Gtp-Binding Sar1 protein function in Er to Golgi transport. J Cell Biol 114(4):671–679. doi: 10.1083/jcb.114.4.671 CrossRefPubMedGoogle Scholar
  12. 12.
    Nakano A, Brada D, Schekman R (1988) A membrane glycoprotein, Sec12p, required for protein-transport from the endoplasmic-reticulum to the Golgi-apparatus in yeast. J Cell Biol 107(3):851–863. doi: 10.1083/jcb.107.3.851 CrossRefPubMedGoogle Scholar
  13. 13.
    Yoshihisa T, Barlowe C, Schekman R (1993) Requirement for a Gtpase-activating protein in vesicle budding from the endoplasmic-reticulum. Science 259(5100):1466–1468. doi: 10.1126/science.8451644 CrossRefPubMedGoogle Scholar
  14. 14.
    Miller E, Antonny B, Hamamoto S, Schekman R (2002) Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J 21(22):6105–6113. doi: 10.1093/emboj/cdf605 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bi XP, Corpina RA, Goldberg J (2002) Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419(6904):271–277. doi: 10.1038/nature01040 CrossRefPubMedGoogle Scholar
  16. 16.
    BarPeled M, Raikhel NV (1997) Characterization of AtSEC12 and AtSAR1 - proteins likely involved in endoplasmic reticulum and Golgi transport. Plant Physiol 114(1):315–324. doi: 10.1104/pp.114.1.315 CrossRefGoogle Scholar
  17. 17.
    Denfert C, Gensse M, Gaillardin C (1992) Fission yeast and a plant have functional homologs of the Sar1-protein and Sec12-protein involved in Er to Golgi traffic in budding yeast. EMBO J 11(11):4205–4211Google Scholar
  18. 18.
    Lee MH, Lee SH, Kim H, Jin JB, Kim DH, Hwang I (2006) A WD40 repeat protein, Arabidopsis Sec13 homolog 1, may play a role in vacuolar trafficking by controlling the membrane association of AtDRP2A. Mol Cells 22(2):210–219PubMedGoogle Scholar
  19. 19.
    Hanton SL, Matheson LA, Chatre L, Brandizzi F (2009) Dynamic organization of COPII coat proteins at endoplasmic reticulum export sites in plant cells. Plant J 57(6):963–974. doi: 10.1111/j.1365-313X.2008.03740.x CrossRefPubMedGoogle Scholar
  20. 20.
    Faso C, Chen YN, Tamura K, Held M, Zemelis S, Marti L, Saravanan R, Hummel E, Kung L, Miller E, Hawes C, Brandizzi F (2009) A missense mutation in the Arabidopsis COPII coat protein Sec24A induces the formation of clusters of the endoplasmic reticulum and Golgi apparatus. Plant Cell 21(11):3655–3671. doi: 10.1105/tpc.109.068262 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nakano RT, Matsushima R, Ueda H, Tamura K, Shimada T, Li LX, Hayashi Y, Kondo M, Nishimura M, Hara-Nishimura I (2009) GNOM-LIKE1/ERMO1 and SEC24a/ERMO2 are required for maintenance of endoplasmic reticulum morphology in Arabidopsis thaliana. Plant Cell 21(11):3672–3685. doi: 10.1105/tpc.109.068270 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Conger R, Chen YN, Fornaciari S, Faso C, Held MA, Renna L, Brandizzi F (2011) Evidence for the involvement of the Arabidopsis SEC24A in male transmission. J Exp Bot 62(14):4917–4926. doi: 10.1093/jxb/err174 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hino T, Tanaka Y, Kawamukai M, Nishimura K, Mano S, Nakagawa T (2011) Two Sec13p homologs, AtSec13A and AtSec13B, redundantly contribute to the formation of COPII transport vesicles in Arabidopsis thaliana. Biosci Biotech Bioch 75(9):1848–1852. doi: 10.1271/bbb.110331 CrossRefGoogle Scholar
  24. 24.
    Tanaka Y, Nishimura K, Kawamukai M, Oshima A, Nakagawa T (2013) Redundant function of two Arabidopsis COPII components, AtSec24B and AtSec24C, is essential for male and female gametogenesis. Planta 238(3):561–575. doi: 10.1007/s00425-013-1913-1 CrossRefPubMedGoogle Scholar
  25. 25.
    Zeng YL, Chung KP, Li BY, Lai CM, Lam SK, Wang XF, Cui Y, Gao CJ, Luo M, Wong KB, Schekman R, Jiang LW (2015) Unique COPII component AtSar1a/AtSec23a pair is required for the distinct function of protein ER export in Arabidopsis thaliana. Proc Natl Acad Sci U S A 112(46):14360–14365. doi: 10.1073/pnas.1519333112 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chung KP, Zeng Y, Jiang L (2016) COPII Paralogs in plants: functional redundancy or diversity? Trends Plant Sci 21(9):758–769. doi: 10.1016/j.tplants.2016.05.010 CrossRefPubMedGoogle Scholar
  27. 27.
    Robinson DG, Herranz MC, Bubeck J, Pepperkok R, Ritzenthaler C (2007) Membrane dynamics in the early secretory pathway. Crit Rev Plant Sci 26(4):199–225. doi: 10.1080/07352680701495820 CrossRefGoogle Scholar
  28. 28.
    Mironov AA (2014) ER-Golgi transport could occur in the absence of COPII vesicles. Nat Rev Mol Cell Biol 15(3):1. doi: 10.1038/nrm3588-c1 CrossRefPubMedGoogle Scholar
  29. 29.
    Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14(6):1293–1309. doi: 10.1105/tpc.001586 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    De Matteis MA, Rega LR (2015) Endoplasmic reticulum-Golgi complex membrane contact sites. Curr Opin Cell Biol 35:43–50. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  31. 31.
    Brandizzi F, Barlowe C (2013) Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 14(6):382–392. doi: 10.1038/nrm3588 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Donohoe BS, Kang BH, Gerl MJ, Gergely ZR, McMichael CM, Bednarek SY, Staehelin LA (2013) Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae. Traffic 14(5):551–567. doi: 10.1111/tra.12052 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ito Y, Uemura T, Shoda K, Fujimoto M, Ueda T, Nakano A (2012) Cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin a treatment in tobacco BY-2 cells. Mol Biol Cell 23(16):3203–3214. doi: 10.1091/mbc.E12-01-0034 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ito Y, Uemura T, Nakano A (2014) Formation and maintenance of the Golgi apparatus in plant cells. Int Rev Cell Mol Biol 310:221–287. doi: 10.1016/B978-0-12-800180-6.00006-2 CrossRefPubMedGoogle Scholar
  35. 35.
    Glick BS, Nakano A (2009) Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 25:113–132. doi: 10.1146/annurev.cellbio.24.110707.175421 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nakano A, Luini A (2010) Passage through the Golgi. Curr Opin Cell Biol 22(4):471–478. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  37. 37.
    Glick BS, Luini A (2011) Models for Golgi traffic: a critical assessment. Cold Spring Harb Perspect Biol 3(11):a005215. doi: 10.1101/cshperspect.a005215 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Farquhar MG (1985) Progress in unraveling pathways of Golgi traffic. Annu Rev Cell Biol 1:447–488. doi: 10.1146/annurev.cb.01.110185.002311 CrossRefPubMedGoogle Scholar
  39. 39.
    Orci L (1986) The morphology of Proinsulin processing. Ann N Y Acad Sci 488:292–316CrossRefPubMedGoogle Scholar
  40. 40.
    Rothman JE, Wieland FT (1996) Protein sorting by transport vesicles. Science 272(5259):227–234. doi: 10.1126/science.272.5259.227 CrossRefPubMedGoogle Scholar
  41. 41.
    Orci L, Amherdt M, Ravazzola M, Perrelet A, Rothman JE (2000) Exclusion of Golgi residents from transport vesicles budding from Golgi cisternae in intact cells. J Cell Biol 150(6):1263–1269. doi: 10.1083/jcb.150.6.1263 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bonfanti L, Mironov AA, Martinez-Menarguez JA, Martella O, Fusella A, Baldassarre M, Buccione R, Geuze HJ, Mironov AA, Luini A (1998) Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95(7):993–1003. doi: 10.1016/S0092-8674(00)81723-7 CrossRefPubMedGoogle Scholar
  43. 43.
    Mironov AA, Beznoussenko GV, Nicoziani P, Martella O, Trucco A, Kweon HS, Di Giandomenico D, Polishchuk RS, Fusella A, Lupetti P, Berger EG, Geerts WJC, Koster AJ, Burger KNJ, Luini A (2001) Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol 155(7):1225–1238. doi: 10.1083/jcb.200108073 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rabouille C, Klumperman J (2005) The maturing role of COPI vesicles in intra-Golgi transport. Nat Rev Mol Cell Biol 6(10):812–817. doi: 10.1038/nrm1735 CrossRefPubMedGoogle Scholar
  45. 45.
    Pimpl P, Movafeghi A, Coughlan S, Denecke J, Hillmer S, Robinson DG (2000) In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell 12(11):2219–2235. doi: 10.1105/tpc.12.11.2219 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Donohoe BS, Kang BH, Staehelin LA (2007) Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi. Proc Natl Acad Sci U S A 104(1):163–168. doi: 10.1073/pnas.0609818104 CrossRefPubMedGoogle Scholar
  47. 47.
    Nilsson T, Jackson M, Peterson PA (1989) Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic-reticulum. Cell 58(4):707–718. doi: 10.1016/0092-8674(89)90105-0 CrossRefPubMedGoogle Scholar
  48. 48.
    Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for retention of Transmembrane proteins in the endoplasmic-reticulum. EMBO J 9(10):3153–3162PubMedPubMedCentralGoogle Scholar
  49. 49.
    Langhans M, Marcote MJ, Pimpl P, Virgili-Lopez G, Robinson DG, Aniento F (2008) In vivo trafficking and localization of p24 proteins in plant cells. Traffic 9(5):770–785. doi: 10.1111/j.1600-0854.2008.00719.x CrossRefPubMedGoogle Scholar
  50. 50.
    Montesinos JC, Sturm S, Langhans M, Hillmer S, Marcote MJ, Robinson DG, Aniento F (2012) Coupled transport of Arabidopsis p24 proteins at the ER-Golgi interface. J Exp Bot 63(11):4243–4261. doi: 10.1093/jxb/ers112 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Montesinos JC, Langhans M, Sturm S, Hillmer S, Aniento F, Robinson DG, Marcote MJ (2013) Putative p24 complexes in Arabidopsis contain members of the delta and beta subfamilies and cycle in the early secretory pathway. J Exp Bot 64(11):3147–3167. doi: 10.1093/jxb/ert157 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gao CJ, CKY Y, Qu S, San MWY, Li KY, Lo SW, Jiang LW (2012) The Golgi-localized Arabidopsis endomembrane protein12 contains both endoplasmic reticulum export and Golgi retention signals at its C terminus. Plant Cell 24(5):2086–2104. doi: 10.1105/tpc.112.096057 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gao CJ, Cai Y, Wang YJ, Kang BH, Aniento F, Robinson DG, Jiang LW (2014) Retention mechanisms for ER and Golgi membrane proteins. Trends Plant Sci 19(8):508–515. doi: 10.1016/j.tplants.2014.04.004 CrossRefPubMedGoogle Scholar
  54. 54.
    Woo CH, Gao CJ, Yu P, LN T, Meng ZY, Banfield DK, Yao XQ, Jiang LW (2015) Conserved function of the lysine-based KXD/E motif in Golgi retention for endomembrane proteins among different organisms. Mol Biol Cell 26(23):4280–4293. doi: 10.1091/mbc.E15-06-0361 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Latijnhouwers M, Gillespie T, Boevink P, Kriechbaumer V, Hawes C, Carvalho CM (2007) Localization and domain characterization of Arabidopsis golgin candidates. J Exp Bot 58(15–16):4373–4386. doi: 10.1093/jxb/erm304 CrossRefPubMedGoogle Scholar
  56. 56.
    Kang BH, Staehelin LA (2008) ER-to-Golgi transport by COPII vesicles in Arabidopsis involves a ribosome-excluding scaffold that is transferred with the vesicles to the Golgi matrix. Protoplasma 234(1–4):51–64. doi: 10.1007/s00709-008-0015-6 CrossRefPubMedGoogle Scholar
  57. 57.
    Ishikawa T, Machida C, Yoshioka Y, Ueda T, Nakano A, Machida Y (2008) EMBRYO YELLOW gene, encoding a subunit of the conserved oligomeric Golgi complex, is required for appropriate cell expansion and meristem organization in Arabidopsis thaliana. Genes Cells 13(6):521–535. doi: 10.1111/j.1365-2443.2008.01186.x CrossRefPubMedGoogle Scholar
  58. 58.
    Tan XY, Cao K, Liu F, Li YX, Li PX, Gao CJ, Ding Y, Lan ZY, Shi ZX, Rui QC, Feng YH, Liu YL, Zhao YX, CY W, Zhang Q, Li Y, Jiang LW, Bao YQ (2016) Arabidopsis COG complex subunits COG3 and COG8 modulate Golgi morphology, vesicle trafficking homeostasis and are essential for pollen tube growth. PLoS Genet 12(7):e1006140. doi: 10.1371/journal.pgen.1006140 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Griffiths G, Simons K (1986) The trans Golgi network - sorting at the exit site of the Golgi-complex. Science 234(4775):438–443. doi: 10.1126/science.2945253 CrossRefPubMedGoogle Scholar
  60. 60.
    Lam SK, Siu CL, Hillmer S, Jang S, An GH, Robinson DG, Jiang LW (2007) Rice SCAMP1 defines clathrin-coated, trans-Golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19(1):296–319. doi: 10.1105/tpc.106.045708 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jurgens G, de Vries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22(4):1344–1357. doi: 10.1105/tpc.109.072637 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+−ATPase activity is required for Endocytic and secretory trafficking in Arabidopsis. Plant Cell 18(3):715–730. doi: 10.1105/tpc.105.037978 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Uemura T, Suda Y, Ueda T, Nakano A (2014) Dynamic behavior of the trans-Golgi network in root tissues of Arabidopsis revealed by super-resolution live imaging. Plant Cell Physiol 55(4):694–703. doi: 10.1093/pcp/pcu010 CrossRefPubMedGoogle Scholar
  64. 64.
    Uemura T (2016) Physiological roles of plant post-Golgi transport pathways in membrane trafficking. Plant Cell Physiol 57(10):2013–2019. doi: 10.1093/pcp/pcw149 CrossRefPubMedGoogle Scholar
  65. 65.
    Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K (2009) A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21(4):1212–1229. doi: 10.1105/tpc.108.058933 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Park M, Song K, Reichardt I, Kim H, Mayer U, Stierhof YD, Hwang I, Jurgens G (2013) Arabidopsis mu-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proc Natl Acad Sci U S A 110(25):10318–10323. doi: 10.1073/pnas.1300460110 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10(4):799–827. doi: 10.1002/pmic.200900514 CrossRefPubMedGoogle Scholar
  68. 68.
    Robinson D, Ding Y, Jiang LW (2016) Unconventional protein secretion in plants: a critical assessment. Protoplasma 253(1):31–43. doi: 10.1007/s00709-015-0887-1 CrossRefPubMedGoogle Scholar
  69. 69.
    Ding Y, Wang J, Wang JQ, Stierhof YD, Robinson DG, Jiang LW (2012) Unconventional protein secretion. Trends Plant Sci 17(10):606–615. doi: 10.1016/j.tplants.2012.06.004 CrossRefPubMedGoogle Scholar
  70. 70.
    Nickel W, Seedorf M (2008) Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu Rev Cell Dev Biol 24:287–308. doi: 10.1146/annurev.cellbio.24.110707.175320 CrossRefPubMedGoogle Scholar
  71. 71.
    Ding Y, Robinson DG, Jiang LW (2014) Unconventional protein secretion (UPS) pathways in plants. Curr Opin Cell Biol 29:107–115. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  72. 72.
    Cheng FY, Williamson JD (2010) Is there leaderless protein secretion in plants? Plant Signal Behav 5(2):129–131CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Cheng FY, Zamski E, Guo WW, Pharr DM, Williamson JD (2009) Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens. Planta 230(6):1093–1103. doi: 10.1007/s00425-009-1006-3 CrossRefPubMedGoogle Scholar
  74. 74.
    Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107(3):193–232. doi: 10.1016/j.jbiotec.2003.10.011 CrossRefPubMedGoogle Scholar
  75. 75.
    Michaelis S, Kistler A, Sapperstein S, Chen P, Berkower C (1993) Molecular analysis of Ste6, the yeast a-factor transporter. FASEB J 7(7):A1195–A1195Google Scholar
  76. 76.
    Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, Nishimura M, Hara-Nishimura I (2009) A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev 23(21):2496–2506. doi: 10.1101/gad.1825209 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hatsugai N, Hara-Nishimura I (2010) Two vacuole-mediated defense strategies in plants. Plant Signal Behav 5(12):1568–1570. doi: 10.4161/psb.5.12.13319 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hara-Nishimura I, Hatsugai N (2011) The role of vacuole in plant cell death. Cell Death Differ 18(8):1298–1304. doi: 10.1038/cdd.2011.70 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    An QL, Huckelhoven R, Kogel KH, Van Bel AJE (2006) Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 8(6):1009–1019. doi: 10.1111/j.1462-5822.2006.00683.x CrossRefPubMedGoogle Scholar
  80. 80.
    An Q, van Bel AJ, Huckelhoven R (2007) Do plant cells secrete exosomes derived from multivesicular bodies? Plant Signal Behav 2(1):4–7CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Aist JR (1976) Papillae and related wound plugs of plant-cells. Annu Rev Phytopathol 14:145–163. doi: 10.1146/ CrossRefGoogle Scholar
  82. 82.
    Aist JR, Williams PH (1971) Cytology and kinetics of cabbage root hair penetration by Plasmodiophora-brassicae. Can J Botany 49(11):2023–2034CrossRefGoogle Scholar
  83. 83.
    Zeyen RJ, Bushnell WR (1979) Papilla response of barley epidermal-cells caused by Erysiphe Graminis - rate and method of deposition determined by Microcinematography and transmission electron-microscopy. Can J Bot 57(8):898–913CrossRefGoogle Scholar
  84. 84.
    Drakakaki G, Dandekar A (2013) Protein secretion: how many secretory routes does a plant cell have? Plant Sci 203:74–78. doi: 10.1016/j.plantsci.2012.12.017 CrossRefPubMedGoogle Scholar
  85. 85.
    Wang JA, Ding Y, Wang JQ, Hillmer S, Miao YS, Lo SW, Wang XF, Robinson DG, Jiang LW (2010) EXPO, an Exocyst-positive organelle distinct from Multivesicular endosomes and Autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22(12):4009–4030. doi: 10.1105/tpc.110.080697 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Lin Y, Ding Y, Wang J, Shen J, Kung CH, Zhuang X, Cui Y, Yin Z, Xia Y, Lin H, Robinson DG, Jiang L (2015) Exocyst-positive organelles and Autophagosomes are distinct organelles in plants. Plant Physiol 169(3):1917–1932. doi: 10.1104/pp.15.00953 PubMedPubMedCentralGoogle Scholar
  87. 87.
    Ding Y, Wang J, Lai JHC, Chan VHL, Wang XF, Cai Y, Tan XY, Bao YQ, Xia J, Robinson DG, Jiang LW (2014) Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Mol Biol Cell 25(3):412–426. doi: 10.1091/mbc.E13-10-0586 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Rutter BD, Innes RW (2017) Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol 173(1):728–741. doi: 10.1104/pp.16.01253 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life SciencesThe Chinese University of Hong KongShatin, New Territories, Hong KongChina

Personalised recommendations