Skip to main content

Analysis of Nanobody–Epitope Interactions in Living Cells via Quantitative Protein Transport Assays

  • Protocol
  • First Online:
Plant Protein Secretion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1662))

Abstract

Over the past few decades, quantitative protein transport analyses have been used to elucidate the sorting and transport of proteins in the endomembrane system of plants. Here, we have applied our knowledge about transport routes and the corresponding sorting signals to establish an in vivo system for testing specific interactions between soluble proteins.

Here, we describe the use of quantitative protein transport assays in tobacco mesophyll protoplasts to test for interactions occurring between a GFP-binding nanobody and its GFP epitope. For this, we use a secreted GFP-tagged α-amylase as a reporter together with a vacuolar-targeted RFP-tagged nanobody. The interaction between these proteins is then revealed by a transport alteration of the secretory reporter due to the interaction-triggered attachment of the vacuolar sorting signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers JC (1985) Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem 260(6):3731–3738

    CAS  PubMed  Google Scholar 

  2. Denecke J, Botterman J, Deblaere R (1990) Protein secretion in plant cells can occur via a default pathway. Plant Cell 2(1):51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Phillipson BA et al (2001) Secretory bulk flow of soluble proteins is efficient and COPII dependent. Plant Cell 13(9):2005–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Denecke J, De Rycke R, Botterman J (1992) Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J 11(6):2345–2355

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pimpl P et al (2006) Golgi-mediated vacuolar sorting of the endoplasmic reticulum chaperone BiP may play an active role in quality control within the secretory pathway. Plant Cell 18(1):198–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bednarek SY, Wilkins TA, Dombrowski JE, Raikhel NV (1990) A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2(12):1145–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holwerda BC, Padgett HS, Rogers JC (1992) Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4(3):307–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frigerio L, de Virgilio M, Prada A, Faoro F, Vitale A (1998) Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Plant Cell 10(6):1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koide Y, Hirano H, Matsuoka K, Nakamura K (1997) The N-terminal propeptide of the precursor to sporamin acts as a vacuole-targeting signal even at the C terminus of the mature part in tobacco cells. Plant Physiol 114(3):863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pimpl P, Hanton SL, Taylor JP, Pinto-DaSilva LL, Denecke J (2003) The GTPase ARF1p controls the sequence-specific vacuolar sorting route to the lytic vacuole. Plant Cell 15(5):1242–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bottanelli F, Foresti O, Hanton S, Denecke J (2011) Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. Plant Cell 23(8):3007–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. daSilva LL et al (2004) Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16(7):1753–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. daSilva LL et al (2005) Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell 17(1):132–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gershlick DC et al (2014) Golgi-dependent transport of vacuolar sorting receptors is regulated by COPII, AP1, and AP4 protein complexes in tobacco. Plant Cell 26(3):1308–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Langhans M et al (2008) In vivo trafficking and localization of p24 proteins in plant cells. Traffic 9(5):770–785

    Article  CAS  PubMed  Google Scholar 

  16. Langhans M, Niemes S, Pimpl P, Robinson DG (2009) Oryzalin bodies: in addition to its anti-microtubule properties, the dinitroaniline herbicide oryzalin causes nodulation of the endoplasmic reticulum. Protoplasma 236(1–4):73–84

    Article  CAS  PubMed  Google Scholar 

  17. Leborgne-Castel N, Jelitto-Van Dooren EP, Crofts AJ, Denecke J (1999) Overexpression of BiP in tobacco alleviates endoplasmic reticulum stress. Plant Cell 11(3):459–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niemes S et al (2010) Sorting of plant vacuolar proteins is initiated in the ER. Plant J 62(4):601–614

    Article  CAS  PubMed  Google Scholar 

  19. Niemes S et al (2010) Retromer recycles vacuolar sorting receptors from the trans-Golgi network. Plant J 61(1):107–121

    Article  CAS  PubMed  Google Scholar 

  20. Pimpl P et al (2000) In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell 12(11):2219–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. daSilva LL, Foresti O, Denecke J (2006) Targeting of the plant vacuolar sorting receptor BP80 is dependent on multiple sorting signals in the cytosolic tail. Plant Cell 18(6):1477–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bubeck J et al (2008) The syntaxins SYP31 and SYP81 control ER-Golgi trafficking in the plant secretory pathway. Traffic 9(10):1629–1652

    Article  CAS  PubMed  Google Scholar 

  23. Shahriari M et al (2010) The AAA-type ATPase AtSKD1 contributes to vacuolar maintenance of Arabidopsis thaliana. Plant J 64(1):71–85

    CAS  PubMed  Google Scholar 

  24. Künzl F, Früholz S, Fäßler F, Li B, Pimpl P (2016) Receptor-mediated sorting of soluble vacuolar proteins ends at the trans-Golgi network/early endosome. Nat Plants 2:16017

    Article  PubMed  Google Scholar 

  25. Humair D, Hernandez Felipe D, Neuhaus JM, Paris N (2001) Demonstration in yeast of the function of BP-80, a putative plant vacuolar sorting receptor. Plant Cell 13(4):781–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scheuring D et al (2012) Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway. BMC Plant Biol 12:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (PI 769/1-2 and the Collaborative Research Centre SFB 1101 “Molecular Encoding of Specificity in Plant Processes”) and of the German Academic Exchange Service (Project 57219822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pimpl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Früholz, S., Pimpl, P. (2017). Analysis of Nanobody–Epitope Interactions in Living Cells via Quantitative Protein Transport Assays. In: Jiang, L. (eds) Plant Protein Secretion. Methods in Molecular Biology, vol 1662. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7262-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7262-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7261-6

  • Online ISBN: 978-1-4939-7262-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics