Advertisement

Selenoproteins pp 231-240 | Cite as

Overexpression of Recombinant Selenoproteins in E. coli

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1661)

Abstract

Expression of selenoproteins necessitates a process of decoding of a UGA codon from termination of translation to insertion of selenocysteine. The mechanisms of this process pose major challenges with regards to recombinant selenoprotein production in E. coli, which however can be overcome especially if the Sec residue is located close to the C-terminal end, as is the case for several naturally found selenoproteins. This chapter summarizes a method to achieve such a production.

Key words

Selenocysteine Selenoprotein Recombinant SelB RF2 (prfB) SECIS element Thioredoxin reductase TGR 

Notes

Acknowledgments

The authors acknowledge funding to ESJA from The Swedish Cancer Society, The Swedish Research Council, Swedish Foundation for Strategic Research, Knut and Alice Wallenberg Foundation, and Karolinska Institutet.

References

  1. 1.
    Castellano S, Gladyshev VN, Guigo R, Berry MJ (2008) SelenoDB 1.0: a database of selenoprotein genes, proteins and SECIS elements. Nucleic Acids Res 36:D332–D338CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443CrossRefPubMedGoogle Scholar
  3. 3.
    Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Rep 5:538–543CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN (2007) Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol 8:R198CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta 1790:1424–1428CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Taskov K, Chapple C, Kryukov GV, Castellano S, Lobanov AV, Korotkov KV, Guigo R, Gladyshev VN (2005) Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an animal genome? Nucleic Acids Res 33:2227–2238CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang Y, Fomenko DE, Gladyshev VN (2005) The microbial selenoproteome of the Sargasso Sea. Genome Biol 6:R37CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brocker MJ, Ho JM, Church GM, Soll D, O'Donoghue P (2014) Recoding the genetic code with selenocysteine. Angew Chem Int Ed Engl 53:319–323CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yoshizawa S, Böck A (2009) The many levels of control on bacterial selenoprotein synthesis. Biochim Biophys Acta 1790:1404–1414CrossRefPubMedGoogle Scholar
  10. 10.
    Gursinsky T, Grobe D, Schierhorn A, Jager J, Andreesen JR, Sohling B (2008) Factors and selenocysteine insertion sequence requirements for the synthesis of selenoproteins from a gram-positive anaerobe in Escherichia coli. Appl Environ Microbiol 74:1385–1393CrossRefPubMedGoogle Scholar
  11. 11.
    Hatfield DL, Carlson BA, Xu XM, Mix H, Gladyshev VN (2006) Selenocysteine incorporation machinery and the role of selenoproteins in development and health. Prog Nucleic Acid Res Mol Biol 81:97–142CrossRefPubMedGoogle Scholar
  12. 12.
    Gladyshev VN, Kryukov GV (2001) Evolution of selenocysteine-containing proteins: significance of identification and functional characterization of selenoproteins. Biofactors 14:87–92CrossRefPubMedGoogle Scholar
  13. 13.
    Böck A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5:515–520CrossRefPubMedGoogle Scholar
  14. 14.
    Hondal RJ (2009) Using chemical approaches to study selenoproteins-focus on thioredoxin reductases. Biochim Biophys Acta 1790:1501–1512CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Miller C, Brocker MJ, Prat L, Ip K, Chirathivat N, Feiock A, Veszpremi M, Soll D (2015) A synthetic tRNA for EF-Tu mediated selenocysteine incorporation in vivo and in vitro. FEBS Lett 589:2194–2199CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Haruna K, Alkazemi MH, Liu Y, Soll D, Englert M (2014) Engineering the elongation factor Tu for efficient selenoprotein synthesis. Nucleic Acids Res 42:9976–9983CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aldag C, Brocker MJ, Hohn MJ, Prat L, Hammond G, Plummer A, Soll D (2013) Rewiring translation for elongation factor Tu-dependent selenocysteine incorporation. Angew Chem Int Ed Engl 52:1441–1445CrossRefPubMedGoogle Scholar
  18. 18.
    Xu J, Eriksson SE, Cebula M, Sandalova T, Hedstrom E, Pader I, Cheng Q, Myers CR, Antholine WE, Nagy P, Hellman U, Selivanova G, Lindqvist Y, Arner ES (2015) The conserved Trp114 residue of thioredoxin reductase 1 has a redox sensor-like function triggering oligomerization and crosslinking upon oxidative stress related to cell death. Cell Death Dis 6:e1616CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cheng Q, Lu L, Grafstrom J, Olofsson MH, Thorell JO, Samen E, Johansson K, Ahlzen HS, Stone-Elander S, Linder S, Arner ES (2012) Combining 11C.-AnxA5 PET imaging with serum biomarkers for improved detection in live mice of modest cell death in human solid tumor xenografts. PLoS One 7:e42151CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cheng Q, Lu L, Grafstrom J, Olofsson MH, Thorell JO, Samen E, Johansson K, Ahlzen HS, Linder S, Arner ES, Stone-Elander S (2012) Site-specifically 11C-labeled Sel-tagged annexin A5 and a size-matched control for dynamic in vivo PET imaging of protein distribution in tissues prior to and after induced cell death. Biochim Biophys Acta 1830:2562–2573CrossRefGoogle Scholar
  21. 21.
    Cheng Q, Stone-Elander S, Arnér ESJ (2006) Tagging recombinant proteins with a Sel-tag for purification, labeling with electrophilic compounds or radiolabeling with carbon-11. Nat Protoc 1:604–613CrossRefPubMedGoogle Scholar
  22. 22.
    Cheng Q, Johansson L, Thorell JO, Fredriksson A, Samen E, Stone-Elander S, Arner ES (2006) Selenolthiol and dithiol C-terminal tetrapeptide motifs for one-step purification and labeling of recombinant proteins produced in E. coli. Chembiochem 7:1976–1981CrossRefPubMedGoogle Scholar
  23. 23.
    Johansson L, Chen C, Thorell JO, Fredriksson A, Stone-Elander S, Gafvelin G, Arner ES (2004) Exploiting the 21st amino acid-purifying and labeling proteins by selenolate targeting. Nat Methods (1):61–66Google Scholar
  24. 24.
    Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, Williams CH Jr, Schirmer RH, Arnér ESJ (2003) Active sites of thioredoxin reductases — why selenoproteins? Proc Natl Acad Sci U S A 100:12618–12623CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Arnér ESJ, Sarioglu H, Lottspeich F, Holmgren A, Böck A (1999) High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes. J. Mol. Biol 292:1003–1016CrossRefPubMedGoogle Scholar
  26. 26.
    Rengby O, Johansson L, Carlson LA, Serini E, Vlamis-Gardikas A, Kårsnäs P, Arnér ESJ (2004) Assessment of production conditions for efficient use of Escherichia coli in high-yield heterologous recombinant Selenoprotein synthesis. Appl Environ Microbiol 70:5159–5167CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Arnér ESJ (2002) Recombinant expression of mammalian selenocysteine-containing thioredoxin reductase and other selenoproteins in Escherichia coli. Methods Enzymol 347:226–235CrossRefPubMedGoogle Scholar
  28. 28.
    Chen NY, Zhang JJ, Paulus H (1989) Chromosomal location of the Bacillus Subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli. J Gen MicrobiolGoogle Scholar
  29. 29.
    Jiang Z, Arnér ESJ, Mu Y, Johansson L, Shi J, Zhao S, Liu S, Wang R, Zhang T, Yan G, Liu J, Shen J, Luo G (2004) Expression of selenocysteine-containing glutathione S-transferase in Escherichia coli. Biochem Biophys Res Commun 321:94–101CrossRefPubMedGoogle Scholar
  30. 30.
    Wallberg H, Grafstrom J, Cheng Q, Lu L, Martinsson Ahlzen HS, Samen E, Thorell JO, Johansson K, Dunas F, Olofsson MH, Stone-Elander S, Arner ES, Stahl S (2012) HER2-positive tumors imaged within 1 hour using a site-specifically 11C-labeled Sel-tagged affibody molecule. J Nucl Med 53:1446–1453CrossRefPubMedGoogle Scholar
  31. 31.
    Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172–2175CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Müller S, Heider J, Böck A (1997) The path of unspecific incorporation of selenium in Escherichia coli. Arch Microbiol 168:421–427CrossRefPubMedGoogle Scholar
  33. 33.
    Cheng Q, Sandalova T, Lindqvist Y, Arnér ESJ (2009) Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. J Biol Chem 284:3998–4008CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Division of Biochemistry, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden

Personalised recommendations