Advertisement

Isolation of Extracellular Vesicles from Stem Cells

  • Zixin Chen
  • Yongjun Li
  • Hong Yu
  • Yan Shen
  • Chengwei Ju
  • Genshan Ma
  • Yutao Liu
  • Il-man Kim
  • Neal L. Weintraub
  • Yaoliang Tang
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)

Abstract

Transplanted induced pluripotent stem cells (IPSC ) and embryonic stem cells (ESC) exhibit enhanced survival in ischemic tissues and promote survival of neighboring cells via paracrine effects. Recent studies indicate that stem cells can secrete extracellular vesicles (EV), which can shuttle noncoding RNA between cells and facilitate intercellular signaling and communication between donor stem cells and recipient tissues. Direct transplantation of IPSC -derived EV (IPSC -EV) is highly effective at promoting survival and preventing apoptosis of cardiomyocytes in a mouse model of acute myocardial ischemia–reperfusion (MI/R). Here, we describe a feasible protocol to purify EV from cultured IPSC .

Key words

Induced pluripotent stem cells Extracellular vesicles 

Notes

Acknowledgment

This work was supported NIH grants AR070029 and HL086555 (to Y.T.), and HL076684 and HL62984 (to N.L.W.).

References

  1. 1.
    Phillips MI et al (2002) Vigilant vector: heart-specific promoter in an adeno-associated virus vector for cardioprotection. Hypertension 39(2 Pt 2):651–655CrossRefPubMedGoogle Scholar
  2. 2.
    Phillips MI, Tang YL, Pinkernell K (2008) Stem cell therapy for heart failure: the science and current progress. Futur Cardiol 4(3):285–298CrossRefGoogle Scholar
  3. 3.
    Tang YL et al (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80(1):229–236. discussion 236–7CrossRefPubMedGoogle Scholar
  4. 4.
    Tang YL et al (2004) Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept 117(1):3–10CrossRefPubMedGoogle Scholar
  5. 5.
    Pan A, Weintraub NL, Tang Y (2014) Enhancing stem cell survival in an ischemic heart by CRISPR-dCas9-based gene regulation. Med Hypotheses 83(6):702–705CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chen L et al (2013) Two-step protocol for isolation and culture of cardiospheres. Methods Mol Biol 1036:75–80CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tang YL et al (2013) Cardiac-derived stem cell-based therapy for heart failure: progress and clinical applications. Exp Biol Med (Maywood) 238(3):294–300CrossRefGoogle Scholar
  8. 8.
    Chen L et al (2013) Cardiac progenitor-derived Exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431(3):566–571CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang Y et al (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192:61–69CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang L et al (2014) MiR-92a regulates viability and angiogenesis of endothelial cells under oxidative stress. Biochem Biophys Res Commun 446(4):952–958CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang L et al (2014) miR-92a inhibits vascular smooth muscle cell apoptosis: role of the MKK4-JNK pathway. Apoptosis 19(6):975–983CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tang Y et al (2015) MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res 106(3):387–397CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tang Y et al (2012) Cross talk between the Notch signaling and noncoding RNA on the fate of stem cells. Prog Mol Biol Transl Sci 111:175–193CrossRefPubMedGoogle Scholar
  14. 14.
    Archer K et al (2015) Long non-coding RNAs as master regulators in cardiovascular diseases. Int J Mol Sci 16(10):23651–23667CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bayoumi AS et al (2016) Crosstalk between long noncoding RNAs and microRNAs in health and disease. Int J Mol Sci 17(3):356CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Khan M et al (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117(1):52–64CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sahoo S et al (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109(7):724–728CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ansa-Addo EA et al (2010) Human plasma membrane-derived vesicles halt proliferation and induce differentiation of THP-1 acute monocytic leukemia cells. J Immunol 185(9):5236–5246CrossRefPubMedGoogle Scholar
  19. 19.
    Ostolska I, Wisniewska M (2014) Application of the zeta potential measurements to explanation of colloidal CrO stability mechanism in the presence of the ionic polyamino acids. Colloid Polym Sci 292(10):2453–2464CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Zixin Chen
    • 1
    • 2
  • Yongjun Li
    • 1
    • 3
  • Hong Yu
    • 4
  • Yan Shen
    • 1
  • Chengwei Ju
    • 1
    • 3
  • Genshan Ma
    • 3
  • Yutao Liu
    • 1
  • Il-man Kim
    • 1
  • Neal L. Weintraub
    • 1
  • Yaoliang Tang
    • 1
  1. 1.Vascular Biology Center, Department of Medicine, Medical College of GeorgiaAugusta UniversityAugustaUSA
  2. 2.The First Clinical Medical CollegeGuangzhou University of Chinese MedicineGuangzhou ShiChina
  3. 3.Department of Cardiology, Zhongda HospitalMedical School of Southeast UniversityNanjingPeople’s Republic of China
  4. 4.Department of Cardiology, Second Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations