Skip to main content

An Adaptable Polyethylene Glycol-Based Workflow for Proteomic Analysis of Extracellular Vesicles

Part of the Methods in Molecular Biology book series (MIMB,volume 1660)


Extracellular vesicles (EVs), including exosomes are endocytically derived nanovesicles expelled from cells that contain molecular information in the form of lipids, proteins, and nucleic acids. Transfer of this information to other cells in local or distant microenvironments facilitates cell-to-cell communication. Importantly, diseased cells release exosomes containing specific cargo that may contribute to pathology and can be harnessed for diagnostic or prognostic use. The broad potential medical utility of exosomes has fueled rapidly expanding research on understanding the composition and functions of exosomes in normal and pathological conditions. Here, we provide a complete workflow for purifying exosome-sized vesicles from biological fluids for in-depth proteomic analyses. Moreover, this polyethylene glycol-based method is efficient, highly adaptable, and compatible with a variety of downstream applications.

Key words

  • Exosomes
  • Microvesicles
  • Extracellular vesicles
  • Mass spectrometry
  • Proteomics
  • Polyethylene glycol
  • Ultracentrifuge

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-1-4939-7253-1_36

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7253-1_25
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7253-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Meckes DG, Raab-Traub N (2011) Microvesicles and viral infection. J Virol 85(24):12844–12854. doi:10.1128/JVI.05853-11

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113(8):E968–E977. doi:10.1073/pnas.1521230113

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Meckes DG, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N (2013) Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci U S A 110(31):E2925–E2933. doi:10.1073/pnas.1303906110

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Meckes DG (2015) Exosomal communication goes viral. J Virol 89(10):5200–5203. doi:10.1128/JVI.02470-14

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Meckes DG, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N (2010) Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A 107(47):20370–20375. doi:10.1073/pnas.1014194107

    CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S (2015) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. doi:10.1016/j.jmb.2015.09.019

  7. Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9(21):4997–5000. doi:10.1002/pmic.200900351

    CAS  CrossRef  PubMed  Google Scholar 

  8. Simpson RJ, Kalra H, Mathivanan S (2012) ExoCarta as a resource for exosomal research. J Extracell Vesicles 1. doi:10.3402/jev.v1i0.18374

  9. Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Krämer-Albers EM, Lim SK, Llorente A, Lötvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-'t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sánchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vázquez J, Vidal M, Wauben MH, Yáñez-Mó M, Zoeller M, Mathivanan S (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10(12):e1001450. doi:10.1371/journal.pbio.1001450

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22. doi:10.1002/0471143030.cb0322s30

  11. Abramowicz A, Widlak P, Pietrowska M (2016) Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Mol BioSyst 12(5):1407–1419. doi:10.1039/c6mb00082g

  12. Rider MA, Hurwitz SN, Meckes DG (2016) ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep 6:23978. doi:10.1038/srep23978.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Théry C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913

    CrossRef  PubMed  Google Scholar 

  14. Hurwitz SN, Conlon MM, Rider MA, Brownstein NC, Meckes DG (2016) Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis . J Extracell Vesicles 5:31295

    Google Scholar 

Download references


Special thanks to Mark Rider for the development of the ExtraPEG protocol used in the described methods, to Xia Liu for careful editing of the methods provided, and to Marius Kostelic for the acquisition of Coomassie-stained images. This work was supported by grants from the Florida Department of Health (6AZ11 and 4BB05) and the National Institutes of Health (CA204621 and CA188941) awarded to D.G.M.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David G. Meckes Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hurwitz, S.N., Meckes, D.G. (2017). An Adaptable Polyethylene Glycol-Based Workflow for Proteomic Analysis of Extracellular Vesicles. In: Kuo, W., Jia, S. (eds) Extracellular Vesicles. Methods in Molecular Biology, vol 1660. Humana Press, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7251-7

  • Online ISBN: 978-1-4939-7253-1

  • eBook Packages: Springer Protocols