Characterization of Extracellular Vesicles by Surface Plasmon Resonance

  • Hyungsoon Im
  • Katherine Yang
  • Hakho Lee
  • Cesar M. CastroEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)


Surface plasmon resonance (SPR ) enables real-time, label-free detection of ligand binding to target receptors immobilized on a sensing surface. SPR has emerged as a promising technique for extracellular vesicle (EV) characterization with its label-free detection scheme, and exquisite sensitivity. Among the various system configurations, nanohole-based SPR sensors are of particular interest because of their simple optical setup, tunability, and scalability. Here, we describe the characterization of circulating EVs or exosomes from human clinical samples using a nanohole-based SPR sensor, named nPLEX (nano-plasmonic exosome) sensing.

Key words

Surface plasmon resonance Periodic nanoholes Label-free detection Protein analysis Clinical specimens 



This work was supported in part by US NIH Grants R01-HL113156 (to H.L.), K12CA087723-11 A1 (to C.M.C.) and 1K99CA201248-01 (to H.I.), the Massachusetts General Hospital Physician Scientist Development Award (to C.M.C.), and the Department of Defense Ovarian Cancer Research Program Award W81XWH-14-1-0279 (to H.L.)


  1. 1.
    Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H (2014) Label-free detection and molecular profiling of EVss with a nano-plasmonic sensor. Nat Biotechnol 32:490–495CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6:709–713CrossRefGoogle Scholar
  3. 3.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRefPubMedGoogle Scholar
  4. 4.
    Rupert DL, Lasser C, Eldh M, Block S, Zhdanov VP, Lotvall JO, Bally M, Hook F (2014) Determination of EV concentration in solution using surface plasmon resonance spectroscopy. Anal Chem 86:5929–5936CrossRefPubMedGoogle Scholar
  5. 5.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539CrossRefPubMedGoogle Scholar
  6. 6.
    Im H, Lesuffleur A, Lindquist NC, Oh SH (2009) Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing. Anal Chem 81:2854–2859CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lindquist NC, Lesuffleur A, Im H, Oh SH (2009) Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab Chip 9:382–387CrossRefPubMedGoogle Scholar
  8. 8.
    Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815CrossRefPubMedGoogle Scholar
  9. 9.
    Lesuffleur A, Im H, Lindquist NC, Oh S-H (2007) Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl Phys Lett 90:243110CrossRefGoogle Scholar
  10. 10.
    Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci U S A 108:11784–11789CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dahlin AB, Jonsson MP, Hook F (2008) Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold. Adv Mater 20:1436–1442CrossRefGoogle Scholar
  12. 12.
    Lee SH, Bantz KC, Lindquist NC, Oh S-H, Haynes CL (2009) Self-assembled plasmonic nanohole arrays. Langmuir 25:13685–13693CrossRefPubMedGoogle Scholar
  13. 13.
    Wittenberg NJ, Im H, Xu X, Wootla B, Watzlawik J, Warrington AE, Rodriguez M, Oh S-H (2012) High-affinity binding of remyelinating natural autoantibodies to myelin-mimicking lipid bilayers revealed by nanohole surface plasmon resonance. Anal Chem 84:6031–6039CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Henzie J, Lee MH, Odom TW (2007) Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol 2:549–554CrossRefPubMedGoogle Scholar
  15. 15.
    Menezes JW, Ferreira J, Santos MJL, Cescato L, Brolo AG (2010) Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics. Adv Funct Mater 20:3918–3924CrossRefGoogle Scholar
  16. 16.
    Im H, Lee SH, Wittenberg NJ, Johnson TW, Lindquist NC, Nagpal P, Norris DJ, Oh S-H (2011) Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 5:6244–6253CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Im H, Sutherland JN, Maynard JA, Oh S-H (2012) Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. Anal Chem 84:1941–1947CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22Google Scholar
  19. 19.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  20. 20.
    Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Hyungsoon Im
    • 1
  • Katherine Yang
    • 1
  • Hakho Lee
    • 1
  • Cesar M. Castro
    • 1
    • 2
    Email author
  1. 1.Cancer Program, MGH Center for Systems Biology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.Division of Hematology-Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations