Skip to main content

Methods of Protein Misfolding Cyclic Amplification

  • Protocol
  • First Online:
Prions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1658))

Abstract

Protein misfolding cyclic amplification (PMCA) amplifies infectious prions in vitro. Over the past decade, PMCA has become an essential tool in prion research. The current chapter describes in detail the PMCA format with beads (PMCAb) and several methods that rely on PMCAb for assessing strain-specific prion amplification rates, for selective amplification of subtypes of PrPSc from a mixture, and a PMCAb approach that can replace animal titration of scrapie material. Development of PMCAb-based methodology is important for addressing a number of research topics including prion strain evolution, selection and adaptation, strain-typing, prion detection, and biochemical requirements for prion replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121:195–206

    Article  CAS  PubMed  Google Scholar 

  2. Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813

    Article  CAS  PubMed  Google Scholar 

  3. Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Acad Natl Sci USA 104:9741–9746

    Article  CAS  Google Scholar 

  4. Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion bacterially expressed recombinant prion protein. Science 327:1132–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deleault NR, Piro JR, Walsh DJ et al (2012) Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Acad Natl Sci USA 109:8546–8551

    Article  CAS  Google Scholar 

  6. Deleault NR, Walsh DJ, Piro JR et al (2012) Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc Acad Natl Sci USA 109:E1938–E1946

    Article  CAS  Google Scholar 

  7. Nishina K, Deleault NR, Mahal S et al (2006) The stoichiometry of host PrPC glycoforms modulates the efficiency of PrPSc formation in vitro. Biochemistry 45:14129–14139

    Article  CAS  PubMed  Google Scholar 

  8. Makarava N, Savtchenko R, Baskakov IV (2013) Selective amplification of classical and atypical prions using modified protein misfolding cyclic amplification. J Biol Chem 288:33–41

    Article  CAS  PubMed  Google Scholar 

  9. Castilla J, Gonzalez-Romero D, Saa P et al (2008) Crossing the species barrier by PrPSc replication in vitro generates unique infectious prions. Cell 134:757–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Green KM, Castilla J, Seward TS et al (2008) Accelerated high fidelity prion amplification within and across prion species barriers. PLoS Pathog 4:e1000139

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shikiya RA, Ayers JI, Schutt CR et al (2010) Coinfecting prion strains compete for a limiting cellular resource. J Virol 84:5706–5714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meyerett C, Michel B, Pulford B et al (2008) In vitro strain adaptation of CWD prions by serial protein misfolding cyclic amplification. Virology 382:267–276

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez-Montalban N, Lee YJ, Makarava N et al (2013) Changes in prion replication environment cause prion strain mutation. FASEB J 27(9):3702–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saa P, Castilla J, Soto C (2006) Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J Biol Chem 281:35245–35252

    Article  CAS  PubMed  Google Scholar 

  15. Makarava N, Savtchenko R, Alexeeva I et al (2012) Fast and ultrasensitive method for quantitating prion infectivity titer. Nat Commun 3:741

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gonzalez-Romero D, Barria MA, Leon P et al (2008) Detection of infectious prions in urine. FEBS Lett 582:3161–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murayama Y, Yoshioka M, Okada H et al (2007) Urinary excretion and blood level of prions in scrapie-infected hamsters. J Gen Virol 88:2890–2898

    Article  CAS  PubMed  Google Scholar 

  18. Saa P, Castilla J, Soto C (2006) Presymptomatic detection of prions in blood. Science 313:92–94

    Article  CAS  PubMed  Google Scholar 

  19. Haley NJ, Mathiason CK, Zabel MD et al (2009) Detection of sub-clinical CWD infection in conventional test-negative deer long after oral exposure to urine and feces from CWD+ deer. PLoS One 4:e7990

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cosseddu GM, Nonno R, Vaccari G et al (2011) Ultra-efficient PrP(Sc) amplification highlights potentialities and pitfalls of PMCA technology. PLoS Pathog 7:e1002370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonzalez-Montalban N, Makarava N, Ostapchenko VG et al (2011) Highly efficient protein misfolding cyclic amplification. PLoS Pathog 7:e1001277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Makarava N, Kovacs GG, Savtchenko R et al (2011) Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease. PLoS Pathog 7:e1002419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez-Montalban N, Baskakov IV (2012) Assessment of strain-specific PrPSc elongation rates revealed a transformation of PrPSc properties during protein misfolding cyclic amplification. PLoS One 7:0041210

    Article  Google Scholar 

  24. Deleault NR, Kascsak R, Geoghegan JC, Supattapone S (2010) Species-dependent differences in cofactor utilization for formation of the protease-resistant prion protein in vitro. Biochemistry 49:3928–3934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kovacs GG, Makarava N, Savtchenko R, Baskakov IV (2013) Atypical and classical forms of the disease-associated state of the prion protein exhibit distinct neuronal tropism, deposition patterns, and lesion profiles. Am J Pathol 183:1539–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ayers JL, Schutt CR, Shikiya RA et al (2011) The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease. PLoS Pathog 7:e1001317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gonzalez-Montalban N, Makarava N, Savtchenko R, Baskakov IV (2011) Relationship between conformational stability and amplification efficiency of prions. Biochemistry 50:7933–7940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Pamela Wright for editing the chapter. This work was supported by the National Institute of Health grants R01 NS045585 and NS074998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia V. Baskakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Makarava, N., Savtchenko, R., Baskakov, I.V. (2017). Methods of Protein Misfolding Cyclic Amplification. In: Lawson, V. (eds) Prions. Methods in Molecular Biology, vol 1658. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7244-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7244-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7242-5

  • Online ISBN: 978-1-4939-7244-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics