Skip to main content

Contribution of Cyclic di-GMP in the Control of Type III and Type VI Secretion in Pseudomonas aeruginosa

  • Protocol
  • First Online:
Book cover c-di-GMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1657))

Abstract

Bacteria produce toxins to enhance their competitiveness in the colonization of an environment as well as during an infection. The delivery of toxins into target cells is mediated by several types of secretion systems, among them our focus is Type III and Type VI Secretion Systems (T3SS and T6SS, respectively). A thorough methodology is provided detailing how to identify if cyclic di-GMP signaling plays a role in the P. aeruginosa toxin delivery mediated by T3SS or T6SS. This includes in vitro preparation of the samples for Western blot analysis aiming at detecting possible c-di-GMP-dependent T3SS/T6SS switch, as well as in vivo analysis using the model organism Galleria mellonella to demonstrate the ecological and pathogenic consequence of the switch between these two secretion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407. doi:10.1146/annurev.genet.40.110405.090423

    Article  CAS  PubMed  Google Scholar 

  2. Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52. doi:10.1128/mmbr.00043-12

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ha DG, O'Toole GA (2015) C-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiol Spect 3(2):MB-0003–MB-2014. doi:10.1128/microbiolspec.MB-0003-2014

    Google Scholar 

  4. Valentini M, Filloux A (2016) Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 291(24):12547–12555. doi:10.1074/jbc.R115.711507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A (2011) The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 13(12):3128–3138. doi:10.1111/j.1462-2920.2011.02595.x

    Article  CAS  PubMed  Google Scholar 

  6. Glavis-Bloom J, Muhammed M, Mylonakis E (2012) Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research. Adv Exp Med Biol 710:11–17. doi:10.1007/978-1-4419-5638-5_2

    Article  CAS  PubMed  Google Scholar 

  7. Lopez Hernandez Y, Yero D, Pinos-Rodriguez JM, Gibert I (2015) Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens. Front Microbiol 6:38. doi:10.3389/fmicb.2015.00038

    PubMed  PubMed Central  Google Scholar 

  8. Joyce SA, Gahan CG (2010) Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. Microbiology 156(Pt 11):3456–3468. doi:10.1099/mic.0.040782-0

    Article  CAS  PubMed  Google Scholar 

  9. Koch G, Nadal-Jimenez P, Cool RH, Quax WJ (2014) Assessing Pseudomonas virulence with nonmammalian host: Galleria mellonella. Methods Mol Biol 1149:681–688. doi:10.1007/978-1-4939-0473-0_52

    Article  PubMed  Google Scholar 

  10. Sawa T, Shimizu M, Moriyama K, Wiener-Kronish JP (2014) Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. Crit Care (London, England) 18(6):668. doi:10.1186/s13054-014-0668-9

    Article  Google Scholar 

  11. Goure J, Pastor A, Faudry E, Chabert J, Dessen A, Attree I (2004) The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect Immun 72(8):4741–4750. doi:10.1128/iai.72.8.4741-4750.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312(5779):1526–1530. doi:10.1126/science.1128393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jones C, Allsopp L, Horlick J, Kulasekara H, Filloux A (2013) Subinhibitory concentration of kanamycin induces the Pseudomonas aeruginosa type VI secretion system. PLoS One 8(11):e81132. doi:10.1371/journal.pone.0081132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7(5):745–754. doi:10.1016/j.devcel.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  15. Dacheux D, Goure J, Chabert J, Usson Y, Attree I (2001) Pore-forming activity of type III system-secreted proteins leads to oncosis of Pseudomonas aeruginosa-infected macrophages. Mol Microbiol 40(1):76–85

    Article  CAS  PubMed  Google Scholar 

  16. Ballister ER, Lai AH, Zuckermann RN, Cheng Y, Mougous JD (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A 105(10):3733–3738. doi:10.1073/pnas.0712247105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A (2016) Type III secretion: building and operating a remarkable nanomachine. Trends Biochem Sci 41(2):175–189. doi:10.1016/j.tibs.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  18. Miyata ST, Bachmann V, Pukatzki S (2013) Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 62(Pt 5):663–676. doi:10.1099/jmm.0.053983-0

    Article  CAS  PubMed  Google Scholar 

  19. Moscoso JA, Jaeger T, Valentini M, Hui K, Jenal U, Filloux A (2014) The diguanylate cyclase SadC is a central player in Gac/Rsm-mediated biofilm formation in Pseudomonas aeruginosa. J Bacteriol 196(23):4081–4088. doi:10.1128/JB.01850-14

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pechy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD, Donahue KM, Grunder J, Loper JE, Keel C (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10(9):2368–2386. doi:10.1111/j.1462-2920.2008.01662.x

    Article  CAS  PubMed  Google Scholar 

  21. Goel MK, Khanna P, Kishore J (2010) Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 1(4):274–278. doi:10.4103/0974-7788.76794

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dudley WN, Wickham R, Coombs N (2016) An introduction to survival statistics: Kaplan-Meier analysis. J Adv Pract Oncol 7(1):91–100

    PubMed  Google Scholar 

  23. Yahr TL, Wolfgang MC (2006) Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 62(3):631–640. doi:10.1111/j.1365-2958.2006.05412.x

    Article  CAS  PubMed  Google Scholar 

  24. Kim J, Ahn K, Min S, Jia J, Ha U, Wu D, Jin S (2005) Factors triggering type III secretion in Pseudomonas aeruginosa. Microbiology 151(Pt 11):3575–3587. doi:10.1099/mic.0.28277-0

    Article  CAS  PubMed  Google Scholar 

  25. Vallis AJ, Yahr TL, Barbieri JT, Frank DW (1999) Regulation of ExoS production and secretion by Pseudomonas aeruginosa in response to tissue culture conditions. Infect Immun 67(2):914–920

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rietsch A, Mekalanos JJ (2006) Metabolic regulation of type III secretion gene expression in Pseudomonas aeruginosa. Mol Microbiol 59(3):807–820. doi:10.1111/j.1365-2958.2005.04990.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iglewski BH, Sadoff J, Bjorn MJ, Maxwell ES (1978) Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci U S A 75(7):3211–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mierendorf RC, Morris BB, Hammer B, Novy RE (1998) Expression and purification of recombinant proteins using the pET system. Methods Mol Med 13:257–292. doi:10.1385/0-89603-485-2:257

    CAS  PubMed  Google Scholar 

  29. Hancock DC, O'Reilly NJ (2005) Synthetic peptides as antigens for antibody production. Methods Mol Biol 295:13–26

    CAS  PubMed  Google Scholar 

  30. Hachani A, Lossi NS, Hamilton A, Jones C, Bleves S, Albesa-Jove D, Filloux A (2011) Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J Biol Chem 286(14):12317–12327. doi:10.1074/jbc.M110.193045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schoehn G, Di Guilmi AM, Lemaire D, Attree I, Weissenhorn W, Dessen A (2003) Oligomerization of type III secretion proteins PopB and PopD precedes pore formation in Pseudomonas. EMBO J 22(19):4957–4967. doi:10.1093/emboj/cdg499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bleves S, Soscia C, Nogueira-Orlandi P, Lazdunski A, Filloux A (2005) Quorum sensing negatively controls type III secretion regulon expression in Pseudomonas aeruginosa PAO1. J Bacteriol 187(11):3898–3902. doi:10.1128/jb.187.11.3898-3902.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Forster A, Planamente S, Manoli E, Lossi NS, Freemont PS, Filloux A (2014) Coevolution of the ATPase ClpV, the sheath proteins TssB and TssC, and the accessory protein TagJ/HsiE1 distinguishes type VI secretion classes. J Biol Chem 289(47):33032–33043. doi:10.1074/jbc.M114.600510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hachani A, Allsopp LP, Oduko Y, Filloux A (2014) The VgrG proteins are "a la carte" delivery systems for bacterial type VI effectors. J Biol Chem 289(25):17872–17884. doi:10.1074/jbc.M114.563429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lossi NS, Manoli E, Forster A, Dajani R, Pape T, Freemont P, Filloux A (2013) The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheathlike structure. J Biol Chem 288(11):7536–7548. doi:10.1074/jbc.M112.439273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lossi NS, Manoli E, Simpson P, Jones C, Hui K, Dajani R, Coulthurst SJ, Freemont P, Filloux A (2012) The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Mol Microbiol 86(2):437–456. doi:10.1111/j.1365-2958.2012.08204.x

    Article  CAS  PubMed  Google Scholar 

  37. Mikkelsen H, McMullan R, Filloux A (2011) The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One 6(12):e29113. doi:10.1371/journal.pone.0029113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Planamente S, Salih O, Manoli E, Albesa-Jove D, Freemont PS, Filloux A (2016) TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J 35(15):1613–1627. doi:10.15252/embj.201694024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soscia C, Hachani A, Bernadac A, Filloux A, Bleves S (2007) Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa. J Bacteriol 189(8):3124–3132. doi:10.1128/jb.01677-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Uzzau S, Figueroa-Bossi N, Rubino S, Bossi L (2001) Epitope tagging of chromosomal genes in salmonella. Proc Natl Acad Sci U S A 98(26):15264–15269. doi:10.1073/pnas.261348198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muhl D, Filloux A (2014) Site-directed mutagenesis and gene deletion using reverse genetics. Methods Mol Biol 1149:521–539. doi:10.1007/978-1-4939-0473-0_40

    Article  CAS  PubMed  Google Scholar 

  42. Rolsma SL, Frank DW (2014) In vitro assays to monitor the activity of Pseudomonas aeruginosa type III secreted proteins. Methods Mol Biol 1149:171–184. doi:10.1007/978-1-4939-0473-0_14

    Article  CAS  PubMed  Google Scholar 

  43. Hachani A, Lossi NS, Filloux A (2013) A visual assay to monitor T6SS-mediated bacterial competition. J Vis Exp 73:e50103. doi:10.3791/50103

    Google Scholar 

  44. Giannouli M, Palatucci AT, Rubino V, Ruggiero G, Romano M, Triassi M, Ricci V, Zarrilli R (2014) Use of larvae of the wax moth Galleria mellonella as an in vivo model to study the virulence of Helicobacter pylori. BMC Microbiol 14:228. doi:10.1186/s12866-014-0228-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Filloux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

McCarthy, R.R., Valentini, M., Filloux, A. (2017). Contribution of Cyclic di-GMP in the Control of Type III and Type VI Secretion in Pseudomonas aeruginosa . In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7240-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7239-5

  • Online ISBN: 978-1-4939-7240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics