Skip to main content

Experimental Detection and Visualization of the Extracellular Matrix in Macrocolony Biofilms

  • Protocol
  • First Online:
c-di-GMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1657))

Abstract

By adopting elaborate three-dimensional morphologies that vary according to their extracellular matrix composition, macrocolony biofilms offer a unique opportunity to interrogate about the roles of specific matrix components in shaping biofilm architecture. Here, we describe two methods optimized for Escherichia coli that profit from morphology and the high level of structural organization of macrocolonies to gain insight into the production and assembly of amyloid curli and cellulose—the two major biofilm matrix elements of E. coli—in biofilms. The first method, the macrocolony morphology assay, is based on the ability of curli and cellulose—either alone or in combination—to generate specific morphological and Congo Red-staining patterns in E. coli macrocolonies, which can then be used as a direct visual readout for the production of these matrix components. The second method involves thin sectioning of macrocolonies, which along with in situ staining of amyloid curli and cellulose and microscopic imaging allows gaining fine details of the spatial arrangement of both matrix elements inside macrocolonies. Beyond their current use with E. coli and related curli and cellulose-producing Enterobacteriaceae, both the methods offer the potential to be adapted to other bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. doi:10.1038/nrmicro2415

    CAS  PubMed  Google Scholar 

  2. Serra DO, Klauck G, Hengge R (2015) Vertical stratification of matrix production is essential for physical integrity and architecture of macrocolony biofilms of Escherichia coli. Environ Microbiol 17:5073–5088. doi:10.1111/1462-2920.12991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Serra DO, Richter AM, Hengge R (2013) Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J Bacteriol 195(24):5540–5554. doi:10.1128/JB.00946-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Serra DO, Richter AM, Klauck G, Mika F, Hengge R (2013) Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. mBio 4(2):e00103-00113. doi:10.1128/mBio.00103-13

    Article  Google Scholar 

  5. Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, MacPhee CE, van Aalten DM, Stanley-Wall NR (2013) BslA is a self-assembling bacterial hydrophobin that coats the Bacillus Subtilis biofilm. Proc Natl Acad Sci U S A 110(33):13600–13605. doi:10.1073/pnas.1306390110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vlamakis H, Aguilar C, Losick R, Kolter R (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22(7):945–953. doi:10.1101/gad.1645008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Römling U (2005) Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 62(11):1234–1246. doi:10.1007/s00018-005-4557-x

    Article  PubMed  Google Scholar 

  8. Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36(4):893–916. doi:10.1111/j.1574-6976.2011.00322.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aguilar C, Vlamakis H, Losick R, Kolter R (2007) Thinking about Bacillus Subtilis as a multicellular organism. Curr Opin Microbiol 10(6):638–643. doi:10.1016/j.mib.2007.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lim B, Beyhan S, Meir J, Yildiz FH (2006) Cyclic-diGMP signal transduction systems in vibrio cholerae: modulation of rugosity and biofilm formation. Mol Microbiol 60(2):331–348. doi:10.1111/j.1365-2958.2006.05106.x

    Article  CAS  PubMed  Google Scholar 

  11. Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus Subtilis biofilms. Proc Natl Acad Sci U S A 107(5):2230–2234. doi:10.1073/pnas.0910560107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39(6):1452–1463

    Article  CAS  PubMed  Google Scholar 

  13. Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas Aeruginosa biofilm matrix. J Bacteriol 186(14):4457–4465. doi:10.1128/JB.186.14.4457-4465.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. White AP, Surette MG (2006) Comparative genetics of the rdar morphotype in Salmonella. J Bacteriol 188(24):8395–8406. doi:10.1128/JB.00798-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bokranz W, Wang X, Tschape H, Römling U (2005) Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 54(Pt 12):1171–1182. doi:10.1099/jmm.0.46064-0

    Article  CAS  PubMed  Google Scholar 

  16. Zogaj X, Bokranz W, Nimtz M, Römling U (2003) Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71(7):4151–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Richter AM, Povolotsky TL, Wieler LH, Hengge R (2014) Cyclic-di-GMP signalling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak Escherichia coli O104:H4. EMBO Mol Med 6(12):1622–1637. doi:10.15252/emmm.201404309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295(5556):851–855. doi:10.1126/science.1067484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reichhardt C, Jacobson AN, Maher MC, Uang J, McCrate OA, Eckart M, Cegelski L (2015) Congo red interactions with Curli-Producing E. coli and native Curli amyloid fibers. PLoS One 10(10):e0140388. doi:10.1371/journal.pone.0140388

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hammar M, Arnqvist A, Bian Z, Olsen A, Normark S (1995) Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18(4):661–670

    Article  CAS  Google Scholar 

  21. Hammar M, Bian Z, Normark S (1996) Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci U S A 93(13):6562–6566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Serra DO, Hengge R (2014) Stress responses go three dimensional - the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ Microbiol 16(6):1455–1471. doi:10.1111/1462-2920.12483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu FP, Callis GM, Stewart PSS, Griebe T, Mcfeters GA (1994) Cryosectioning of biofilms for microscopic examination. Biofouling 8:85–91

    Article  Google Scholar 

  24. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS (2004) Stratified growth in Pseudomonas Aeruginosa biofilms. Appl Environ Microbiol 70(10):6188–6196. doi:10.1128/AEM.70.10.6188-6196.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Financial support was provided by the European Research Council under the European Union’s Seventh Framework Programme (ERC-AdG 249780 to RH), the Deutsche Forschungsgemeinschaft (He 1556/20-1 to RH) and the Alexander von Humboldt Foundation (postdoc fellowship to DOS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego O. Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Serra, D.O., Hengge, R. (2017). Experimental Detection and Visualization of the Extracellular Matrix in Macrocolony Biofilms. In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7240-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7239-5

  • Online ISBN: 978-1-4939-7240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics