Abstract
Second-generation RNA-based fluorescent biosensors have been developed that enable flow cytometry experiments to monitor the population dynamics of c-di-GMP signaling in live bacteria. These experiments are high-throughput, provide information at the single-cell level, and can be performed on cells grown in complex media and/or under anaerobic conditions. Here, we describe flow cytometry methods for three applications: (1) high-throughput screening for diguanylate cyclase activity, (2) analyzing c-di-GMP levels under anaerobic conditions, and (3) monitoring cell population dynamics of c-di-GMP levels upon environmental changes. These methods showcase RNA-based fluorescent biosensors as versatile tools for studying c-di-GMP signaling in bacteria.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52. doi:10.1128/MMBR.00043-12
Tischler AD, Camilli A (2004) Cyclic diguanylate (c-di-GMP) regulates vibrio cholerae biofilm formation. Mol Microbiol 53(3):857–869. doi:10.1111/j.1365-2958.2004.04155.x
Spangler C, Bohm A, Jenal U, Seifert R, Kaever V (2010) A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods 81(3):226–231. doi:10.1016/j.mimet.2010.03.020
Stelitano V, Brandt A, Fernicola S, Franceschini S, Giardina G, Pica A, Rinaldo S, Sica F, Cutruzzola F (2013) Probing the activity of diguanylate cyclases and c-di-GMP phosphodiesterases in real-time by CD spectroscopy. Nucleic Acids Res 41(7):e79. doi:10.1093/nar/gkt028
Kellenberger CA, Sales-Lee J, Pan Y, Gassaway MM, Herr AE, Hammond MC (2015) A minimalist biosensor : quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer. RNA Biol 12(11):1189–1197. doi:10.1080/15476286.2015.1062970
Roelofs KG, Wang J, Sintim HO, Lee VT (2011) Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc Natl Acad Sci U S A 108(37):15528–15533. doi:10.1073/pnas.1018949108
Wolfe AJ, Berg HC (1989) Migration of bacteria in semisolid agar. Proc Natl Acad Sci U S A 86(18):6973–6977
O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches to study of biofilms. Methods Enzymol 310:91–109
Koestler BJ, Waters CM (2014) Bile acids and bicarbonate inversely regulate intracellular cyclic di-GMP in vibrio cholerae. Infect Immun 82(7):3002–3014. doi:10.1128/IAI.01664-14
Ho CL, Chong KS, Oppong JA, Chuah ML, Tan SM, Liang ZX (2013) Visualizing the perturbation of cellular cyclic di-GMP levels in bacterial cells. J Am Chem Soc 135(2):566–569. doi:10.1021/ja310497x
Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI (2010) Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328(5983):1295–1297. doi:10.1126/science.1188658
Kellenberger CA, Wilson SC, Sales-Lee J, Hammond MC (2013) RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc 135(13):4906–4909. doi:10.1021/ja311960g
Kellenberger CA, Hallberg ZF, Hammond MC (2015) Live cell imagin g using Riboswitch-Spinach tRNA fusions as metabolite-sensing fluorescent biosenso r s. Methods Mol Biol 1316:87–103. doi:10.1007/978-1-4939-2730-2_8
Kellenberger CA, Hammond MC (2015) In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors . Methods Enzymol 550:147–172. doi:10.1016/bs.mie.2014.10.045
Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333(6042):642–646. doi:10.1126/science.1207339
Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335(6073):1194. doi:10.1126/science.1218298
Wang XC, Wilson SC, Hammond MC (2016) Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Res 44(17):e139. doi:10.1093/nar/gkw580
Song W, Strack RL, Svensen N, Jaffrey SR (2014) Plug-and-play fluorophores extend the spectral properties of Spinach. J Am Chem Soc 136(4):1198–1201. doi:10.1021/ja410819x
Hallberg ZF, Wang XC, Wright TA, Nan B, Ad O, Yeo J, Hammond MC (2016) Hybrid promiscuous (Hypr) GGDEF enzymes produce cyclic AMP-GMP (3′, 3′-cGAMP). Proc Natl Acad Sci U S A 113(7):1790–1795. doi:10.1073/pnas.1515287113
Tuckerman JR, Gonzalez G, Sousa EH, Wan X, Saito JA, Alam M, Gilles-Gonzalez MA (2009) An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48(41):9764–9774. doi:10.1021/bi901409g
Lacey MM, Partridge JD, Green J (2010) Escherichia coli K-12 YfgF is an anaerobic cyclic di-GMP phosphodiesterase with roles in cell surface remodelling and the oxidative stress response. Microbiology 156(Pt 9):2873–2886. doi:10.1099/mic.0.037887-0
An S, Wu J, Zhang LH (2010) Modulation of Pseudomonas Aeruginosa biofilm dispersal by a cyclic-di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl Environ Microbiol 76(24):8160–8173. doi:10.1128/AEM.01233-10
Reid BG, Flynn GC (1997) Chromophore formation in green fluorescent protein. Biochemistry 36(22):6786–6791. doi:10.1021/bi970281w
Craggs TD (2009) Green fluorescent protein: structure, folding and chromophore maturation. Chem Soc Rev 38(10):2865–2875. doi:10.1039/b903641p
Yeo J, Dippel, AB, Wang, XC, Hammond, MC Manuscript in preparation
Zahringer F, Lacanna E, Jenal U, Schirmer T, Boehm A (2013) Structure and signaling mechanism of a zinc-sensory diguanylate cyclase. Structure 21(7):1149–1157. doi:10.1016/j.str.2013.04.026
Acknowledgment
The work on which this chapter is based was supported by NIH grant DP2 OD008677 (to M.C.H.). The authors thank Zachary Hallberg for assistance with figures.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media LLC
About this protocol
Cite this protocol
Yeo, J., Wang, X.C., Hammond, M.C. (2017). Live Flow Cytometry Analysis of c-di-GMP Levels in Single Cell Populations. In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_10
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7240-1_10
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7239-5
Online ISBN: 978-1-4939-7240-1
eBook Packages: Springer Protocols