Skip to main content

Copy Number Variation Analysis by Droplet Digital PCR

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1654))

Abstract

The health impact of many copy number variants in our genome remains still largely to be discovered. Detecting and genotyping this often complex variation presents a technical challenge. Here we describe a 96-well format droplet digital PCR (ddPCR) protocol for genotyping a common copy variant in the human haptoglobin gene. ddPCR allows for high-throughput and accurate quantitation of gene copy numbers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Henrichsen CN, Chaignat E, Reymond A (2009) Copy number variants, diseases and gene expression. Hum Mol Genet 18:1–8

    Article  Google Scholar 

  2. Buchanan JA, Scherer SW (2008) Contemplating effects of genomic structural variation. Genet Med 10:639–647

    Article  PubMed  Google Scholar 

  3. Jiang W, Johnson C, Jayaraman J et al (2012) Copy number variation leads to considerable diversity for B but not a haplotypes of the human KIR genes encoding NK cell receptors. Genome Res 22:1845–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weaver S, Dube S, Mir A et al (2010) Taking qPCR to a higher level: analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods 50:271–276

    Article  CAS  PubMed  Google Scholar 

  5. D’haene B, Vandesompele J, Hellemans J (2010) Accurate and objective copy number profiling using real-time quantitative PCR. Methods 50:262–270

    Article  PubMed  Google Scholar 

  6. Rose-Zerilli MJ, Barton SJ, Henderson AJ et al (2009) Copy-number variation genotyping of GSTT1 and GSTM1 gene deletions by real-time PCR. Clin Chem 55:1680–1685

    Article  CAS  PubMed  Google Scholar 

  7. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pinheiro LB, Coleman VA, Hindson CM et al (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011

    Article  CAS  PubMed  Google Scholar 

  9. Hindson CM, Chevillet JR, Briggs HA et al (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10(10):1003–1005. doi:10.1038/nmeth.2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roberts CH, Jiang W, Jayaraman J et al (2014) Killer-cell immunoglobulin-like receptor gene linkage and copy number variation analysis by droplet digital PCR. Genome Med 6:20

    Article  PubMed  PubMed Central  Google Scholar 

  11. Langlois MR, Delanghe JR (1996) Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem 42:1589–1600

    CAS  PubMed  Google Scholar 

  12. Maeda N, Yang F, Barnett DR et al (1984) Duplication within the haptoglobin Hp2 gene. Nature 309:131–135

    Article  CAS  PubMed  Google Scholar 

  13. Kristiansen M, Graversen JH, Jacobsen C et al (2001) Identification of the haemoglobin scavenger receptor. Nature 409:198–201

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen MJ, Moestrup SK (2009) Receptor targeting of hemoglobin mediated by the haptoglobins: roles beyond heme scavenging. Blood 114:764–771

    Article  CAS  PubMed  Google Scholar 

  15. Okazaki T, Yanagisawa Y, Nagai T (1997) Analysis of the affinity of each haptoglobin polymer for hemoglobin by two-dimensional affinity electrophoresis. Clin Chim Acta 258:137–144

    Article  CAS  PubMed  Google Scholar 

  16. Wejman JC, Hovsepian D, Wall JS et al (1984) Structure and assembly of Haptoglobin polymers by electron microscopy. J Mol Biol 174:343–368

    Article  CAS  PubMed  Google Scholar 

  17. R Core Team (2015) R: a language and environment for statistical computing. In: R Found. Stat. Comput. https://www.r-project.org/. Accessed 31 Jul 2016

  18. Rozen S, Skaletzky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols (methods in molecular biology). Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

  19. Jullien N (2013) AmplifX 1.7.0. http://crn2m.univ-mrs.fr/pub/amplifx-dist. Accessed 31 Jul 2016

  20. National Centre for Biotechnology Information (2016) Variation Viewer http://www.ncbi.nlm.nih.gov/variation/view/. Accessed 31 Jul 2016

  21. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  22. Luo W, Yang H, Rathbun K et al (2005) Detection of human immunodeficiency virus type 1 DNA in dried blood spots by a duplex real-time PCR assay detection of human immunodeficiency virus type 1 DNA in dried blood spots by a duplex real-time PCR Assay. J Clin Microbiol 43:1851–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bio-Rad (2014) Droplet digital PCR applications guide. pp. 1–111. http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6407.pdf/. Accessed 5 July 2017

  24. Karlin-Neumann G, Montesclaros L, Heredia N et al (2012) Probing copy number variations using bio-Rad’s QX100™ droplet digital™ PCR system. BioRad Tech Bull 6277. http://www.bio-rad.com/webroot/web/pdf/lsr/literature/bulletin_6277.pdf. Accessed 5 July 2017

  25. Dingle TC, Hall Sedlak R, Cook L, Jerome KR (2013) Tolerance of droplet-digital PCR versus real-time quantitative PCR to inhibitory substances. Clin Chem 59:1670–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement (MC-A760-5QX00). Further funding was provided by the UK Biotechnology and Biological Sciences Research Council (BBSRC BB/M009513/1 to SKH). We thank BJ Hennig for access MRC Keneba Biobank (The Gambia) samples and data, and special thanks to all participants and staff at MRC Keneba, The Gambia. RB is supported by the Wellcome Trust (098521/B/12/Z). ChR is supported by the Wellcome Trust Institutional Strategic Support Fund (105609/Z/14/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrissy H. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Härmälä, S.K., Butcher, R., Roberts, C.H. (2017). Copy Number Variation Analysis by Droplet Digital PCR. In: Kaufmann, M., Klinger, C., Savelsbergh, A. (eds) Functional Genomics. Methods in Molecular Biology, vol 1654. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7231-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7231-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7230-2

  • Online ISBN: 978-1-4939-7231-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics