Protein Arrays III: Reverse-Phase Protein Arrays

  • Yulin Yuan
  • Xia Hong
  • Zuan-Tao Lin
  • Hongting Wang
  • Mikala Heon
  • Tianfu WuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1654)


The reverse-phase protein array (RPPA) is to use highly specific antibodies to interrogate pan or posttranslationally modified protein targets, such as phosphorylated proteins, particularly the proteins involved in cell signaling pathways. In this protocol we will cover the preparation of cell (or tissue) lysates, sample printing, antibody validation, antibody interrogation, signal amplification steps, imaging and data analysis. In this protocol, colorimetric catalyzed signal amplification (CSA) chemistry, fluorescence and near-infrared (NIR) based detection methods will be described.

Key words

Reverse-phase protein array Antibody validation Cell signaling pathways Near-infrared (NIR) fluorescence 



This work was partly supported by a grant from the Lupus Research Institute to T.W. and a startup fund from the University of Houston to T.W.


  1. 1.
    Pierobon M, VanMeter AJ, Moroni N, Galdi F, Petricoin EF (2012) Reverse-phase protein microarrays. Methods Mol Biol 823:215–235CrossRefPubMedGoogle Scholar
  2. 2.
    Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, Kornblau SM (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5(10):2512–2521. doi: 10.1158/1535-7163.MCT-06-0334 CrossRefPubMedGoogle Scholar
  3. 3.
    Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D, Espina V, Aquino J, Speer R, Araujo R, Mills GB, Liotta LA, Petricoin EF 3rd, Wulfkuhle JD (2005) Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4(4):346–355. doi: 10.1074/mcp.T500003-MCP200 CrossRefPubMedGoogle Scholar
  4. 4.
    Kornblau SM, Tibes R, Qiu YH, Chen W, Kantarjian HM, Andreeff M, Coombes KR, Mills GB (2009) Functional proteomic profiling of AML predicts response and survival. Blood 113(1):154–164. doi: 10.1182/blood-2007-10-119438 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Carter BZ, Qiu Y, Huang X, Diao L, Zhang N, Coombes KR, Mak DH, Konopleva M, Cortes J, Kantarjian HM, Mills GB, Andreeff M, Kornblau SM (2012) Survivin is highly expressed in CD34(+)38(−) leukemic stem/progenitor cells and predicts poor clinical outcomes in AML. Blood 120(1):173–180. doi: 10.1182/blood-2012-02-409888 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nanos-Webb A, Bui T, Karakas C, Zhang D, Carey JP, Mills GB, Hunt KK, Keyomarsi K (2016) PKCiota promotes ovarian tumor progression through deregulation of cyclin E. Oncogene 35(19):2428–2440. doi: 10.1038/onc.2015.301 CrossRefPubMedGoogle Scholar
  7. 7.
    Lui VW, Peyser ND, Ng PK, Hritz J, Zeng Y, Lu Y, Li H, Wang L, Gilbert BR, General IJ, Bahar I, Ju Z, Wang Z, Pendleton KP, Xiao X, Du Y, Vries JK, Hammerman PS, Garraway LA, Mills GB, Johnson DE, Grandis JR (2014) Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer. Proc Natl Acad Sci U S A 111(3):1114–1119. doi: 10.1073/pnas.1319551111 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Spurrier B, Ramalingam S, Nishizuka S (2008) Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 3(11):1796–1808CrossRefPubMedGoogle Scholar
  9. 9.
    Boellner S, Becker K-F (2015) Reverse phase protein arrays—quantitative assessment of multiple biomarkers in biopsies for clinical use. Microarrays 4(2):98–114CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gujral TS, Karp RL, Finski A, Chan M, Schwartz PE, MacBeath G, Sorger P (2013) Profiling phospho-signaling networks in breast cancer using reverse-phase protein arrays. Oncogene 32(29):3470–3476CrossRefPubMedGoogle Scholar
  11. 11.
    Peng A, Wu T, Zeng C, Rakheja D, Zhu J, Ye T, Hutcheson J, Vaziri ND, Liu Z, Mohan C (2011) Adverse effects of simulated hyper-and hypo-phosphatemia on endothelial cell function and viability. PLoS One 6(8):e23268CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Yulin Yuan
    • 1
    • 2
  • Xia Hong
    • 1
    • 3
  • Zuan-Tao Lin
    • 1
  • Hongting Wang
    • 1
    • 4
  • Mikala Heon
    • 1
  • Tianfu Wu
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringUniversity of HoustonHoustonUSA
  2. 2.Department of Clinical LaboratoryThe People’s Hospital of Guangxi Zhuang Autonomous RegionNanningChina
  3. 3.Department of NursingFujian Health CollegeFuzhouChina
  4. 4.National Pharmacology Laboratory of Chinese MedicineBasic Medical College, Wannan Medical CollegeWuhuChina

Personalised recommendations