Skip to main content

Drugs to Tune Up Glutamatergic Systems: Modulators of Glutamate Metabotropic Receptors

  • Protocol
  • First Online:
Book cover Biochemical Approaches for Glutamatergic Neurotransmission

Part of the book series: Neuromethods ((NM,volume 130))

Abstract

The metabotropic glutamate (mGlu) receptors are Class C G protein-coupled receptors that offer promising potential therapeutic targets for multiple central nervous system (CNS) disorders. Dysfunction or dysregulation of the glutamatergic system, the main excitatory neurotransmitter system in the CNS, is thought to be associated with multiple CNS disorders including schizophrenia, depression, anxiety, Fragile X syndrome, Parkinson’s disease, and refractory chronic pain. Here, we describe drug discovery and development approaches for targeting mGlu receptors, with particular focus on allosteric modulation and biased agonism. Binding to allosteric sites that are topographically distinct from the endogenous binding site, allows for increased selectivity between receptor subtypes, and maintaining tonal and temporal glutamatergic responses. Biased agonism allows for further specialization, with the potential to design drugs that target desired receptor responses at the exclusion of those leading to adverse effects. Collectively, these newer paradigms of drug action offer the promise for discovery of therapeutics with favorable outcomes and minimized adverse effects within the delicate CNS environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houamed KM et al (1991) Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 252(5010):1318–1321

    Article  CAS  PubMed  Google Scholar 

  2. Masu M et al (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349(6312):760–765

    Article  CAS  PubMed  Google Scholar 

  3. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  PubMed  Google Scholar 

  4. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hermans E, Challiss RA (2001) Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 359(Pt 3):465–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peavy RD, Conn PJ (1998) Phosphorylation of mitogen-activated protein kinase in cultured rat cortical glia by stimulation of metabotropic glutamate receptors. J Neurochem 71(2):603–612

    Article  CAS  PubMed  Google Scholar 

  7. Thandi S et al (2002) Group-I metabotropic glutamate receptors, mGlu1a and mGlu5a, couple to extracellular signal-regulated kinase (ERK) activation via distinct, but overlapping, signalling pathways. J Neurochem 83(5):1139–1153

    Article  CAS  PubMed  Google Scholar 

  8. Hou L, Klann E (2004) Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 24(28):6352–6361

    Article  CAS  PubMed  Google Scholar 

  9. Chan TO et al (1999) AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68:965–1014

    Article  CAS  PubMed  Google Scholar 

  10. Waung MW, Huber KM (2009) Protein translation in synaptic plasticity: mGluR-LTD, Fragile X. Curr Opin Neurobiol 19(3):319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mao L et al (2005) The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons. J Neurosci 25(10):2741–2752

    Article  CAS  PubMed  Google Scholar 

  12. Tu JC et al (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23(3):583–592

    Article  CAS  PubMed  Google Scholar 

  13. Grabrucker AM et al (2011) Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 21(10):594–603

    Article  CAS  PubMed  Google Scholar 

  14. Aramori I, Nakanishi S (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells. Neuron 8(4):757–765

    Article  CAS  PubMed  Google Scholar 

  15. Hermans E et al (2000) Complex involvement of pertussis toxin-sensitive G proteins in the regulation of type 1alpha metabotropic glutamate receptor signaling in baby hamster kidney cells. Mol Pharmacol 58(2):352–360

    CAS  PubMed  Google Scholar 

  16. Francesconi A, Duvoisin RM (1998) Role of the second and third intracellular loops of metabotropic glutamate receptors in mediating dual signal transduction activation. J Biol Chem 273(10):5615–5624

    Article  CAS  PubMed  Google Scholar 

  17. Joly C et al (1995) Molecular, functional, and pharmacological characterization of the metabotropic glutamate receptor type 5 splice variants: comparison with mGluR1. J Neurosci 15(5 Pt 2):3970–3981

    CAS  PubMed  Google Scholar 

  18. Abe T et al (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267(19):13361–13368

    CAS  PubMed  Google Scholar 

  19. Balazs R et al (1997) Metabotropic glutamate receptor mGluR5 in astrocytes: pharmacological properties and agonist regulation. J Neurochem 69(1):151–163

    Article  CAS  PubMed  Google Scholar 

  20. Cochilla AJ, Alford S (1998) Metabotropic glutamate receptor-mediated control of neurotransmitter release. Neuron 20(5):1007–1016

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi T et al (1996) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274(5287):594–597

    Article  CAS  PubMed  Google Scholar 

  22. Stefani A et al (1998) Group III metabotropic glutamate receptor agonists modulate high voltage-activated Ca2+ currents in pyramidal neurons of the adult rat. Exp Brain Res 119(2):237–244

    Article  CAS  PubMed  Google Scholar 

  23. Daniel H, Crepel F (2001) Control of Ca(2+) influx by cannabinoid and metabotropic glutamate receptors in rat cerebellar cortex requires K(+) channels. J Physiol 537(Pt 3):793–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cain SM et al (2008) mGlu4 potentiation of K(2P)2.1 is dependant on C-terminal dephosphorylation. Mol Cell Neurosci 37(1):32–39

    Article  CAS  PubMed  Google Scholar 

  25. Saugstad JA et al (1996) Metabotropic glutamate receptors activate G-protein-coupled inwardly rectifying potassium channels in Xenopus oocytes. J Neurosci 16(19):5979–5985

    CAS  PubMed  Google Scholar 

  26. Martin R et al (2007) mGluR7 inhibits glutamate release through a PKC-independent decrease in the activity of P/Q-type Ca2+ channels and by diminishing cAMP in hippocampal nerve terminals. Eur J Neurosci 26(2):312–322

    Article  PubMed  Google Scholar 

  27. Chavis P et al (1998) Visualization of cyclic AMP-regulated presynaptic activity at cerebellar granule cells. Neuron 20(4):773–781

    Article  CAS  PubMed  Google Scholar 

  28. Muguruza C et al (2016) Group II metabotropic glutamate receptors as targets for novel antipsychotic drugs. Front Pharmacol 7:130

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Bruno V et al (2016) The impact of metabotropic glutamate receptors into active neurodegenerative processes: a “dark side” in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology. doi:10.1016/j.neuropharm.2016.04.044

  30. Senter RK et al (2016) The role of mGlu receptors in hippocampal plasticity deficits in neurological and psychiatric disorders: implications for allosteric modulators as novel therapeutic strategies. Curr Neuropharmacol 14(5):455–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koga K et al (2016) Metabotropic glutamate receptor dependent cortical plasticity in chronic pain. Curr Neuropharmacol 14(5):427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357

    Article  PubMed  CAS  Google Scholar 

  33. Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev 54(2):323–374

    Article  CAS  PubMed  Google Scholar 

  34. Christopoulos A et al (2014) International Union of Basic and Clinical Pharmacology. XC. Multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol Rev 66(4):918–947

    Article  CAS  PubMed  Google Scholar 

  35. Wu H et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344(6179):58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Christopher JA et al (2015) Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 58(16):6653–6664

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y et al (2008) N-{4-Chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide (CPPHA) acts through a novel site as a positive allosteric modulator of group 1 metabotropic glutamate receptors. Mol Pharmacol 73(3):909–918

    Article  CAS  PubMed  Google Scholar 

  38. Brauner-Osborne H et al (1999) Interaction of CPCCOEt with a chimeric mGlu1b and calcium sensing receptor. Neuroreport 10(18):3923–3925

    Article  CAS  PubMed  Google Scholar 

  39. Gasparini F et al (2001) Discovery and characterization of non-competitive antagonists of group I metabotropic glutamate receptors. Farmaco 56(1–2):95–99

    Article  CAS  PubMed  Google Scholar 

  40. Gasparini F et al (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38(10):1493–1503

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y et al (2007) Interaction of novel positive allosteric modulators of metabotropic glutamate receptor 5 with the negative allosteric antagonist site is required for potentiation of receptor responses. Mol Pharmacol 71(5):1389–1398

    Article  CAS  PubMed  Google Scholar 

  42. Bradley SJ et al (2011) Quantitative analysis reveals multiple mechanisms of allosteric modulation of the mGlu5 receptor in rat astroglia. Mol Pharmacol 79(5):874–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gregory KJ et al (2012) Investigating metabotropic glutamate receptor 5 allosteric modulator cooperativity, affinity, and agonism: enriching structure-function studies and structure-activity relationships. Mol Pharmacol 82(5):860–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rovira X et al (2015) Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors. FASEB J 29(1):116–130

    Article  CAS  PubMed  Google Scholar 

  45. Mabire D et al (2005) Synthesis, structure-activity relationship, and receptor pharmacology of a new series of quinoline derivatives acting as selective, noncompetitive mGlu1 antagonists. J Med Chem 48(6):2134–2153

    Article  CAS  PubMed  Google Scholar 

  46. Sengmany K et al (2016) Biased allosteric agonism and modulation of metabotropic glutamate receptor 5: implications for optimizing preclinical neuroscience drug discovery. Neuropharmacology. doi:10.1016/j.neuropharm.2016.07.001

  47. Rook JM et al (2013) Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity. Biol Psychiatry 73(6):501–509

    Article  CAS  PubMed  Google Scholar 

  48. Bridges TM et al (2013) Biotransformation of a novel positive allosteric modulator of metabotropic glutamate receptor subtype 5 contributes to seizure-like adverse events in rats involving a receptor agonism-dependent mechanism. Drug Metab Dispos 41(9):1703–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pecknold JC et al (1982) Treatment of anxiety using fenobam (a nonbenzodiazepine) in a double-blind standard (diazepam) placebo-controlled study. J Clin Psychopharmacol 2(2):129–133

    Article  CAS  PubMed  Google Scholar 

  50. Porter RH et al (2005) Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther 315(2):711–721

    Article  CAS  PubMed  Google Scholar 

  51. Wieronska JM, Pilc A (2013) Glutamate-based anxiolytic ligands in clinical trials. Expert Opin Investig Drugs 22(8):1007–1022

    Article  CAS  PubMed  Google Scholar 

  52. Watterson LR et al (2013) Attenuation of reinstatement of methamphetamine-, sucrose-, and food-seeking behavior in rats by fenobam, a metabotropic glutamate receptor 5 negative allosteric modulator. Psychopharmacology 225(1):151–159

    Article  CAS  PubMed  Google Scholar 

  53. Huang CC et al (2015) Cocaine withdrawal impairs mGluR5-dependent long-term depression in nucleus accumbens shell neurons of both direct and indirect pathways. Mol Neurobiol 52(3):1223–1233

    Article  CAS  PubMed  Google Scholar 

  54. Jacob W et al (2009) The anxiolytic and analgesic properties of fenobam, a potent mGlu5 receptor antagonist, in relation to the impairment of learning. Neuropharmacology 57(2):97–108

    Article  CAS  PubMed  Google Scholar 

  55. Montana MC et al (2011) Metabotropic glutamate receptor 5 antagonism with fenobam: examination of analgesic tolerance and side effect profile in mice. Anesthesiology 115(6):1239–1250

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Berry-Kravis E et al (2009) A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J Med Genet 46(4):266–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Quiroz JA et al (2016) Efficacy and safety of basimglurant as adjunctive therapy for major depression: a randomized clinical trial. JAMA Psychiatry. doi:10.1001/jamapsychiatry.2016.0838

  58. Dore AS et al (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511(7511):557–562

    Article  CAS  PubMed  Google Scholar 

  59. Berry-Kravis E et al (2016) Mavoglurant in fragile X syndrome: results of two randomized, double-blind, placebo-controlled trials. Sci Transl Med 8(321):321ra5

    Article  PubMed  CAS  Google Scholar 

  60. Bailey DB Jr et al (2016) Mavoglurant in adolescents with fragile X syndrome: analysis of clinical global impression-improvement source data from a double-blind therapeutic study followed by an open-label, long-term extension study. J Neurodev Disord 8:1

    Article  PubMed  Google Scholar 

  61. Trenkwalder C et al (2016) Mavoglurant in Parkinson’s patients with l-dopa-induced dyskinesias: two randomized phase 2 studies. Mov Disord. doi:10.1002/mds.26585

  62. Yan QJ et al (2005) Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49(7):1053–1066

    Article  CAS  PubMed  Google Scholar 

  63. Dolen G et al (2007) Correction of fragile X syndrome in mice. Neuron 56(6):955–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Michalon A et al (2012) Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74(1):49–56

    Article  CAS  PubMed  Google Scholar 

  65. Nickols HH et al (2016) VU0477573: partial negative allosteric modulator of the subtype 5 metabotropic glutamate receptor with in vivo efficacy. J Pharmacol Exp Ther 356(1):123–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cartmell J et al (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther 291(1):161–170

    CAS  PubMed  Google Scholar 

  67. Schoepp DD et al (2003) LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress. Stress 6(3):189–197

    Article  CAS  PubMed  Google Scholar 

  68. Conn PJ, Jones CK (2009) Promise of mGluR2/3 activators in psychiatry. Neuropsychopharmacology 34(1):248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jin X et al (2010) The mGluR2 positive allosteric modulator BINA decreases cocaine self-administration and cue-induced cocaine-seeking and counteracts cocaine-induced enhancement of brain reward function in rats. Neuropsychopharmacology 35(10):2021–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jalan-Sakrikar N et al (2014) Identification of positive allosteric modulators VU0155094 (ML397) and VU0422288 (ML396) reveals new insights into the biology of metabotropic glutamate receptor 7. ACS Chem Neurosci 5(12):1221–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vilar B et al (2013) Alleviating pain hypersensitivity through activation of type 4 metabotropic glutamate receptor. J Neurosci 33(48):18951–18965

    Article  CAS  PubMed  Google Scholar 

  72. Goudet C et al (2008) Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain 137(1):112–124

    Article  CAS  PubMed  Google Scholar 

  73. Maj M et al (2003) (−)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection. Neuropharmacology 45(7):895–906

    Article  CAS  PubMed  Google Scholar 

  74. Marino MJ et al (2003) Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci U S A 100(23):13668–13673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Battaglia G et al (2006) Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci 26(27):7222–7229

    Article  CAS  PubMed  Google Scholar 

  76. Jones CK et al (2011) Discovery, synthesis, and structure-activity relationship development of a series of N-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): characterization of a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu(4)) with oral efficacy in an antiparkinsonian animal model. J Med Chem 54(21):7639–7647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Le Poul E et al (2012) A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson's disease. J Pharmacol Exp Ther 343(1):167–177

    Article  PubMed  CAS  Google Scholar 

  78. Bennouar KE et al (2013) Synergy between L-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson's disease treatment and dyskinesia. Neuropharmacology 66:158–169

    Article  CAS  PubMed  Google Scholar 

  79. Keov P et al (2011) Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacology 60(1):24–35

    Article  CAS  PubMed  Google Scholar 

  80. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912

    Article  CAS  PubMed  Google Scholar 

  81. Hall DA (2000) Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol Pharmacol 58(6):1412–1423

    CAS  PubMed  Google Scholar 

  82. Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25(4):186–192

    Article  CAS  PubMed  Google Scholar 

  83. Kenakin T (2009) Quantifying biological activity in chemical terms: a pharmacology primer to describe drug effect. ACS Chem Biol 4(4):249–260

    Article  CAS  PubMed  Google Scholar 

  84. Ehlert FJ (1988) Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol Pharmacol 33(2):187–194

    CAS  PubMed  Google Scholar 

  85. Leach K et al (2007) Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol Sci 28(8):382–389

    Article  CAS  PubMed  Google Scholar 

  86. Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220(1219):141–162

    Article  CAS  PubMed  Google Scholar 

  87. Price MR et al (2005) Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 68(5):1484–1495

    Article  CAS  PubMed  Google Scholar 

  88. Gregory KJ et al (2013) Pharmacology of metabotropic glutamate receptor allosteric modulators: structural basis and therapeutic potential for CNS disorders. Prog Mol Biol Transl Sci 115:61–121

    Article  CAS  PubMed  Google Scholar 

  89. Lavreysen H et al (2003) [3H]R214127: a novel high-affinity radioligand for the mGlu1 receptor reveals a common binding site shared by multiple allosteric antagonists. Mol Pharmacol 63(5):1082–1093

    Article  CAS  PubMed  Google Scholar 

  90. Kohara A et al (2005) Radioligand binding properties and pharmacological characterization of 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM-298198), a high-affinity, selective, and noncompetitive antagonist of metabotropic glutamate receptor type 1. J Pharmacol Exp Ther 315(1):163–169

    Article  CAS  PubMed  Google Scholar 

  91. Gasparini F et al (2002) [(3)H]-M-MPEP, a potent, subtype-selective radioligand for the metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 12(3):407–409

    Article  CAS  PubMed  Google Scholar 

  92. Cosford ND et al (2003) [3H]-methoxymethyl-MTEP and [3H]-methoxy-PEPy: potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor. Bioorg Med Chem Lett 13(3):351–354

    Article  CAS  PubMed  Google Scholar 

  93. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108

    Article  CAS  PubMed  Google Scholar 

  94. Gregory KJ et al (2010) Overview of receptor allosterism. Curr Protoc Pharmacol. Chapter 1:Unit 1.21

    Google Scholar 

  95. Schaffhauser H et al (2003) Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2. Mol Pharmacol 64(4):798–810

    Article  CAS  PubMed  Google Scholar 

  96. Lundstrom L et al (2011) Structural determinants of allosteric antagonism at metabotropic glutamate receptor 2: mechanistic studies with new potent negative allosteric modulators. Br J Pharmacol 164(2b):521–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Johnson MP et al (2005) Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s). Psychopharmacology 179(1):271–283

    Article  CAS  PubMed  Google Scholar 

  98. Knoflach F et al (2001) Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc Natl Acad Sci U S A 98(23):13402–13407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kinney GG et al (2005) A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J Pharmacol Exp Ther 313(1):199–206

    Article  CAS  PubMed  Google Scholar 

  100. Pagano A et al (2000) The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J Biol Chem 275(43):33750–33758

    Article  CAS  PubMed  Google Scholar 

  101. Litschig S et al (1999) CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol Pharmacol 55(3):453–461

    CAS  PubMed  Google Scholar 

  102. Hemstapat K et al (2006) A novel class of positive allosteric modulators of metabotropic glutamate receptor subtype 1 interact with a site distinct from that of negative allosteric modulators. Mol Pharmacol 70(2):616–626

    Article  CAS  PubMed  Google Scholar 

  103. Melancon BJ et al (2012) Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J Med Chem 55(4):1445–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lindsley CW et al (2016) Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem Rev 116(11):6707–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. O'Hara PJ et al (1993) The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11(1):41–52

    Article  PubMed  Google Scholar 

  106. Costantino G, Pellicciari R (1996) Homology modeling of metabotropic glutamate receptors. (mGluRs) structural motifs affecting binding modes and pharmacological profile of mGluR1 agonists and competitive antagonists. J Med Chem 39(20):3998–4006

    Article  CAS  PubMed  Google Scholar 

  107. Kunishima N et al (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407(6807):971–977

    Article  CAS  PubMed  Google Scholar 

  108. Muto T et al (2007) Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci U S A 104(10):3759–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Okamoto T et al (1998) Expression and purification of the extracellular ligand binding region of metabotropic glutamate receptor subtype 1. J Biol Chem 273(21):13089–13096

    Article  CAS  PubMed  Google Scholar 

  110. Rondard P et al (2006) Coupling of agonist binding to effector domain activation in metabotropic glutamate-like receptors. J Biol Chem 281(34):24653–24661

    Article  CAS  PubMed  Google Scholar 

  111. Goudet C et al (2004) Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like receptors. Proc Natl Acad Sci U S A 101(1):378–383

    Article  CAS  PubMed  Google Scholar 

  112. Suzuki G et al (2007) Pharmacological characterization of a new, orally active and potent allosteric metabotropic glutamate receptor 1 antagonist, 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl- 3,6-dihydropyridine-1(2H)-carboxamide (FTIDC). J Pharmacol Exp Ther 321(3):1144–1153

    Article  CAS  PubMed  Google Scholar 

  113. Pin J, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  CAS  PubMed  Google Scholar 

  114. Romano C et al (2001) Covalent and noncovalent interactions mediate metabotropic glutamate receptor mGlu5 dimerization. Mol Pharmacol 59(1):46–53

    CAS  PubMed  Google Scholar 

  115. Romano C et al (1996) Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 271(45):28612–28616

    Article  CAS  PubMed  Google Scholar 

  116. Malherbe P et al (2006) Comparison of the binding pockets of two chemically unrelated allosteric antagonists of the mGlu5 receptor and identification of crucial residues involved in the inverse agonism of MPEP. J Neurochem 98(2):601–615

    Article  CAS  PubMed  Google Scholar 

  117. Malherbe P et al (2003) Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol 64(4):823–832

    Article  CAS  PubMed  Google Scholar 

  118. Sheffler DJ et al (2011) Allosteric modulation of metabotropic glutamate receptors. Adv Pharmacol 62:37–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gregory KJ et al (2013) Probing the metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulator (PAM) binding pocket: discovery of point mutations that engender a “molecular switch” in PAM pharmacology. Mol Pharmacol 83(5):991–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. O'Brien JA et al (2004) A novel selective allosteric modulator potentiates the activity of native metabotropic glutamate receptor subtype 5 in rat forebrain. J Pharmacol Exp Ther 309(2):568–577

    Article  PubMed  CAS  Google Scholar 

  121. Noetzel MJ et al (2013) A novel metabotropic glutamate receptor 5 positive allosteric modulator acts at a unique site and confers stimulus bias to mGlu5 signaling [Erratum appears in Mol Pharmacol. 2013;84(4):654]. Mol Pharmacol 83(4):835–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hammond AS et al (2010) Discovery of a novel chemical class of mGlu(5) allosteric ligands with distinct modes of pharmacology. ACS Chem Neurosci 1(10):702–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rodriguez AL et al (2010) Identification of a glycine sulfonamide based non-MPEP site positive allosteric potentiator (PAM) of mGlu5. In: Probe reports from the NIH molecular libraries program. National Center for Biotechnology Information (US), Bethesda, MD

    Google Scholar 

  124. Gee CE et al (2014) Blocking metabotropic glutamate receptor subtype 7 (mGlu7) via the Venus flytrap domain (VFTD) inhibits amygdala plasticity, stress, and anxiety-related behavior. J Biol Chem 289(16):10975–10987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Prinster SC et al (2005) Heterodimerization of g protein-coupled receptors: specificity and functional significance. Pharmacol Rev 57(3):289–298

    Article  CAS  PubMed  Google Scholar 

  126. Doumazane E et al (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 25(1):66–77

    Article  CAS  PubMed  Google Scholar 

  127. Yin S et al (2014) Selective actions of novel allosteric modulators reveal functional heteromers of metabotropic glutamate receptors in the CNS. J Neurosci 34(1):79–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kammermeier PJ (2012) Functional and pharmacological characteristics of metabotropic glutamate receptors 2/4 heterodimers. Mol Pharmacol 82(3):438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sevastyanova TN, Kammermeier PJ (2014) Cooperative signaling between homodimers of metabotropic glutamate receptors 1 and 5. Mol Pharmacol 86(5):492–504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  130. Gama L et al (2001) Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons. J Biol Chem 276(42):39053–39059

    Article  CAS  PubMed  Google Scholar 

  131. Schroder H et al (2009) Allosteric modulation of metabotropic glutamate receptor 5 affects phosphorylation, internalization, and desensitization of the micro-opioid receptor. Neuropharmacology 56(4):768–778

    Article  CAS  PubMed  Google Scholar 

  132. Rodrigues RJ et al (2005) Co-localization and functional interaction between adenosine A(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J Neurochem 92(3):433–441

    Article  PubMed  CAS  Google Scholar 

  133. Ferre S et al (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci U S A 99(18):11940–11945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Williams JT et al (2013) Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 65(1):223–254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  135. Purgert CA et al (2014) Intracellular mGluR5 can mediate synaptic plasticity in the hippocampus. J Neurosci 34(13):4589–4598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  136. Jong YJ et al (2009) Intracellular metabotropic glutamate receptor 5 (mGluR5) activates signaling cascades distinct from cell surface counterparts. J Biol Chem 284(51):35827–35838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kumar V et al (2008) Activated nuclear metabotropic glutamate receptor mGlu5 couples to nuclear Gq/11 proteins to generate inositol 1,4,5-trisphosphate-mediated nuclear Ca2+ release. J Biol Chem 283(20):14072–14083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hubert GW et al (2001) Differential subcellular localization of mGluR1a and mGluR5 in the rat and monkey Substantia nigra. J Neurosci 21(6):1838–1847

    CAS  PubMed  Google Scholar 

  139. Jong YJ et al (2014) Location-dependent signaling of the group 1 metabotropic glutamate receptor mGlu5. Mol Pharmacol 86(6):774–785

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jong YJ et al (2005) Functional metabotropic glutamate receptors on nuclei from brain and primary cultured striatal neurons. Role of transporters in delivering ligand. J Biol Chem 280(34):30469–30480

    Article  CAS  PubMed  Google Scholar 

  141. Kumar V et al (2012) Activation of intracellular metabotropic glutamate receptor 5 in striatal neurons leads to up-regulation of genes associated with sustained synaptic transmission including Arc/Arg3.1 protein. J Biol Chem 287(8):5412–5425

    Article  CAS  PubMed  Google Scholar 

  142. Wood MR et al (2011) “Molecular switches” on mGluR allosteric ligands that modulate modes of pharmacology. Biochemist 50(13):2403–2410

    Article  CAS  Google Scholar 

  143. Sharma S et al (2009) Discovery of molecular switches that modulate modes of metabotropic glutamate receptor subtype 5 (mGlu5) pharmacology in vitro and in vivo within a series of functionalized, regioisomeric 2- and 5-(phenylethynyl)pyrimidines. J Med Chem 52(14):4103–4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rodriguez AL et al (2005) A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators. Mol Pharmacol 68(6):1793–1802

    CAS  PubMed  Google Scholar 

  145. Lamb JP et al (2011) Discovery of molecular switches within the ADX-47273 mGlu5 PAM scaffold that modulate modes of pharmacology to afford potent mGlu5 NAMs, PAMs and partial antagonists. Bioorg Med Chem Lett 21(9):2711–2714

    Article  CAS  PubMed  Google Scholar 

  146. Sheffler DJ et al (2012) Development of a novel, CNS-penetrant, metabotropic glutamate receptor 3 (mGlu3) NAM probe (ML289) derived from a closely related mGlu5 PAM. Bioorg Med Chem Lett 22(12):3921–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Galandrin S et al (2016) Delineating biased ligand efficacy at 7TM receptors from an experimental perspective. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2016.04.009

  148. Luttrell LM (2014) Minireview: More than just a hammer: ligand “bias” and pharmaceutical discovery. Mol Endocrinol 28(3):281–294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  149. Kenakin T et al (2012) A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 3(3):193–203

    Article  CAS  PubMed  Google Scholar 

  150. Kenakin T, Christopoulos A (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12(3):205–216

    Article  CAS  PubMed  Google Scholar 

  151. Emery AC et al (2012) Ligand bias at metabotropic glutamate 1a receptors: molecular determinants that distinguish beta-arrestin-mediated from G protein-mediated signaling. Mol Pharmacol 82(2):291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hathaway HA et al (2015) Pharmacological characterization of mGlu1 receptors in cerebellar granule cells reveals biased agonism. Neuropharmacology. doi:10.1016/j.neuro-pharm.2015.02.007

  153. Thompson GL et al (2014) Biological redundancy of endogenous GPCR ligands in the gut and the potential for endogenous functional selectivity. Front Pharmacol 5:262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  154. Rook JM et al (2015) Biased mGlu5-positive allosteric modulators provide in vivo efficacy without potentiating mGlu5 modulation of NMDAR currents. Neuron 86(4):1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gregory KJ et al (2013) N-aryl piperazine metabotropic glutamate receptor 5 positive allosteric modulators possess efficacy in preclinical models of NMDA hypofunction and cognitive enhancement. J Pharmacol Exp Ther 347(2):438–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cook AE et al (2015) Biased allosteric modulation at the CaS receptor engendered by structurally diverse calcimimetics. Br J Pharmacol 172(1):185–200

    Article  CAS  PubMed  Google Scholar 

  157. Zhang Y et al (2005) Allosteric potentiators of metabotropic glutamate receptor subtype 5 have differential effects on different signaling pathways in cortical astrocytes. J Pharmacol Exp Ther 315(3):1212–1219

    Article  CAS  PubMed  Google Scholar 

  158. Suratman S et al (2011) Impact of species variability and ‘probe-dependence’ on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor. Br J Pharmacol 162(7):1659–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Valant C et al (2012) Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol Pharmacol 81(1):41–52

    Article  CAS  PubMed  Google Scholar 

  160. Sanacora G et al (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62(1):63–77

    Article  CAS  PubMed  Google Scholar 

  161. Kaiser LG et al (2005) Age-related glutamate and glutamine concentration changes in normal human brain: (1)H MR spectroscopy study at 4 T. Neurobiol Aging 26(5):665–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Auer DP et al (2000) Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 47(4):305–313

    Article  CAS  PubMed  Google Scholar 

  163. Hashimoto K et al (2007) Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 62(11):1310–1316

    Article  CAS  PubMed  Google Scholar 

  164. Amalric M (2015) Targeting metabotropic glutamate receptors (mGluRs) in Parkinson’s disease. Curr Opin Pharmacol 20:29–34

    Article  CAS  PubMed  Google Scholar 

  165. Bruno V et al (2001) Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 21(9):1013–1033

    Article  CAS  PubMed  Google Scholar 

  166. Conn PJ (2003) Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann N Y Acad Sci 1003:12–21

    Article  CAS  PubMed  Google Scholar 

  167. Nicoletti F et al (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60(7–8):1017–1041

    Article  CAS  PubMed  Google Scholar 

  168. Nicoletti F et al (2015) Metabotropic glutamate receptors as drug targets: what’s new? Curr Opin Pharmacol 20:89–94

    Article  CAS  PubMed  Google Scholar 

  169. Spooren W et al (2003) Insight into the function of Group I and Group II metabotropic glutamate (mGlu) receptors: behavioural characterization and implications for the treatment of CNS disorders. Behav Pharmacol 14(4):257–277

    Article  CAS  PubMed  Google Scholar 

  170. Spooren WP et al (2001) Novel allosteric antagonists shed light on mglu(5) receptors and CNS disorders. Trends Pharmacol Sci 22(7):331–337

    Article  CAS  PubMed  Google Scholar 

  171. Noetzel MJ et al (2012) Emerging approaches for treatment of schizophrenia: modulation of glutamatergic signaling. Discov Med 14(78):335–343

    PubMed  PubMed Central  Google Scholar 

  172. Morris BJ et al (2005) PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 5(1):101–106

    Article  CAS  PubMed  Google Scholar 

  173. Adler CM et al (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 156(10):1646–1649

    Article  CAS  PubMed  Google Scholar 

  174. Marek GJ et al (2010) Glutamatergic (N-methyl-D-aspartate receptor) hypofrontality in schizophrenia: too little juice or a miswired brain? Mol Pharmacol 77(3):317–326

    Article  CAS  PubMed  Google Scholar 

  175. Wieronska JM et al (2016) Metabotropic glutamate receptors as targets for new antipsychotic drugs: historical perspective and critical comparative assessment. Pharmacol Ther 157:10–27

    Article  CAS  PubMed  Google Scholar 

  176. Serafini G et al (2013) Pharmacological properties of glutamatergic drugs targeting NMDA receptors and their application in major depression. Curr Pharm Des 19(10):1898–1922

    Article  CAS  PubMed  Google Scholar 

  177. Matosin N, Newell KA (2013) Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev 37(3):256–268

    Article  CAS  PubMed  Google Scholar 

  178. Wright RA et al (2013) CNS distribution of metabotropic glutamate 2 and 3 receptors: transgenic mice and [(3)H]LY459477 autoradiography. Neuropharmacology 66:89–98

    Article  CAS  PubMed  Google Scholar 

  179. Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281(5381):1349–1352

    Article  CAS  PubMed  Google Scholar 

  180. Lu WY et al (1999) G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat Neurosci 2(4):331–338

    Article  CAS  PubMed  Google Scholar 

  181. Borgdorff AJ, Choquet D (2002) Regulation of AMPA receptor lateral movements. Nature 417(6889):649–653

    Article  CAS  PubMed  Google Scholar 

  182. Gould RW et al (2016) Partial mGlu(5) negative allosteric modulators attenuate cocaine-mediated behaviors and lack psychotomimetic-like effects. Neuropsychopharmacology 41(4):1166–1178

    Article  CAS  PubMed  Google Scholar 

  183. Horio M et al (2013) Therapeutic effects of metabotropic glutamate receptor 5 positive allosteric modulator CDPPB on phencyclidine-induced cognitive deficits in mice. Fundam Clin Pharmacol 27(5):483–488

    Article  CAS  PubMed  Google Scholar 

  184. Rodriguez AL et al (2010) Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol Pharmacol 78(6):1105–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Parmentier-Batteur S et al (2014) Mechanism based neurotoxicity of mGlu5 positive allosteric modulators—development challenges for a promising novel antipsychotic target. Neuropharmacology 82:161–173

    Article  CAS  PubMed  Google Scholar 

  186. Kessler RC et al (2009) The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiol Psichiatr Soc 18(1):23–33

    Article  PubMed  PubMed Central  Google Scholar 

  187. Tham A et al (2016) Efficacy and tolerability of antidepressants in people aged 65 years or older with major depressive disorder – a systematic review and a meta-analysis. J Affect Disord 205:1–12

    Article  CAS  PubMed  Google Scholar 

  188. Woods JH et al (1992) Benzodiazepines: use, abuse, and consequences. Pharmacol Rev 44(2):151–347

    CAS  PubMed  Google Scholar 

  189. Galling B et al (2015) Safety and tolerability of antidepressant co-treatment in acute major depressive disorder: results from a systematic review and exploratory meta-analysis. Expert Opin Drug Saf 14(10):1587–1608

    Article  PubMed  CAS  Google Scholar 

  190. Chojnacka-Wojcik E et al (2001) Glutamate receptor ligands as anxiolytics. Curr Opin Investig Drugs 2(8):1112–1119

    CAS  PubMed  Google Scholar 

  191. Chaki S et al (2013) mGlu2/3 and mGlu5 receptors: potential targets for novel antidepressants. Neuropharmacology 66:40–52

    Article  CAS  PubMed  Google Scholar 

  192. Swanson CJ et al (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 4(2):131–144

    Article  CAS  PubMed  Google Scholar 

  193. Galici R et al (2005) A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. J Pharmacol Exp Ther 315(3):1181–1187

    Article  CAS  PubMed  Google Scholar 

  194. Galici R et al (2006) Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice. J Pharmacol Exp Ther 318(1):173–185

    Article  CAS  PubMed  Google Scholar 

  195. Valenti O et al (2002) Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors co-expressed in the same neuronal populations. J Cell Physiol 191(2):125–137

    Article  CAS  PubMed  Google Scholar 

  196. Inta D et al (2013) Significant increase in anxiety during aging in mGlu5 receptor knockout mice. Behav Brain Res 241:27–31

    Article  CAS  PubMed  Google Scholar 

  197. Li X et al (2006) Metabotropic glutamate 5 receptor antagonism is associated with antidepressant-like effects in mice. J Pharmacol Exp Ther 319(1):254–259

    Article  CAS  PubMed  Google Scholar 

  198. Spooren WP et al (2000) Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295(3):1267–1275

    CAS  PubMed  Google Scholar 

  199. Schulz B et al (2001) The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 41(1):1–7

    Article  CAS  PubMed  Google Scholar 

  200. Belozertseva IV et al (2007) Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests. Eur Neuropsychopharmacol 17(3):172–179

    Article  CAS  PubMed  Google Scholar 

  201. Felts AS et al (2013) Discovery of VU0409106: a negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorg Med Chem Lett 23(21):5779–5785

    Article  CAS  PubMed  Google Scholar 

  202. Mueller R et al (2012) Discovery of 2-(2-benzoxazoyl amino)-4-aryl-5-cyanopyrimidine as negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu(5)): from an artificial neural network virtual screen to an in vivo tool compound. ChemMedChem 7(3):406–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Tzschentke TM, Schmidt WJ (2003) Glutamatergic mechanisms in addiction. Mol Psychiatry 8(4):373–382

    Article  CAS  PubMed  Google Scholar 

  204. Christie MJ et al (1987) Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA. Neuroscience 22(2):425–439

    Article  CAS  PubMed  Google Scholar 

  205. Gorelova N, Yang CR (1997) The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat. Neuroscience 76(3):689–706

    Article  CAS  PubMed  Google Scholar 

  206. Eiler WJ 2nd et al (2011) mGlu5 receptor deletion reduces relapse to food-seeking and prevents the anti-relapse effects of mGlu5 receptor blockade in mice. Life Sci 89(23–24):862–867

    Article  CAS  PubMed  Google Scholar 

  207. Bird MK et al (2010) Cocaine-mediated synaptic potentiation is absent in VTA neurons from mGlu5-deficient mice. Int J Neuropsychopharmacol 13(2):133–141

    Article  CAS  PubMed  Google Scholar 

  208. Olsen CM et al (2010) Operant sensation seeking requires metabotropic glutamate receptor 5 (mGluR5). PLoS One 5(11):e15085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Stoker AK et al (2012) Involvement of metabotropic glutamate receptor 5 in brain reward deficits associated with cocaine and nicotine withdrawal and somatic signs of nicotine withdrawal. Psychopharmacology 221(2):317–327

    Article  CAS  PubMed  Google Scholar 

  210. Chesworth R et al (2013) The metabotropic glutamate 5 receptor modulates extinction and reinstatement of methamphetamine-seeking in mice. PLoS One 8(7):e68371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Chiamulera C et al (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 4(9):873–874

    Article  CAS  PubMed  Google Scholar 

  212. Olive M (2009) Metabotropic glutamate receptor ligands as potential therapeutics for addiction. Curr Drug Abuse Rev 2:83–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Liechti ME et al (2007) Metabotropic glutamate 2/3 receptors in the ventral tegmental area and the nucleus accumbens shell are involved in behaviors relating to nicotine dependence. J Neurosci 27(34):9077–9085

    Article  CAS  PubMed  Google Scholar 

  214. Helton DR et al (1997) LY354740: a metabotropic glutamate receptor agonist which ameliorates symptoms of nicotine withdrawal in rats. Neuropharmacology 36(11–12):1511–1516

    Article  CAS  PubMed  Google Scholar 

  215. Caprioli D et al (2015) Effect of the novel positive allosteric modulator of metabotropic glutamate receptor 2 AZD8529 on incubation of methamphetamine craving after prolonged voluntary abstinence in a rat model. Biol Psychiatry 78(7):463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288(5472):1765–1769

    Article  CAS  PubMed  Google Scholar 

  217. Martin LJ et al (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9(2):259–270

    Article  CAS  PubMed  Google Scholar 

  218. Walker K et al (2001) mGlu5 receptors and nociceptive function: II. mGlu5 receptors functionally expressed on peripheral sensory neurones mediate inflammatory hyperalgesia. Neuropharmacology 40(1):10–19

    Article  CAS  PubMed  Google Scholar 

  219. Crawford JH et al (2000) Mobilisation of intracellular Ca2+ by mGluR5 metabotropic glutamate receptor activation in neonatal rat cultured dorsal root ganglia neurones. Neuropharmacology 39(4):621–630

    Article  CAS  PubMed  Google Scholar 

  220. Galik J et al (2008) Involvement of group I metabotropic glutamate receptors and glutamate transporters in the slow excitatory synaptic transmission in the spinal cord dorsal horn. Neuroscience 154(4):1372–1387

    Article  CAS  PubMed  Google Scholar 

  221. Kolber BJ et al (2010) Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior. J Neurosci 30(24):8203–8213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Bennett CE et al (2012) Fused tricyclic mGluR1 antagonists for the treatment of neuropathic pain. Bioorg Med Chem Lett 22(4):1575–1578

    Article  CAS  PubMed  Google Scholar 

  223. Jamison RN, Mao J (2015) Opioid analgesics. Mayo Clin Proc 90(7):957–968

    Article  CAS  PubMed  Google Scholar 

  224. Garber KB et al (2008) Fragile X syndrome. Eur J Hum Genet 16(6):666–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Huber KM et al (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99(11):7746–7750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Bear MF et al (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27(7):370–377

    Article  CAS  PubMed  Google Scholar 

  227. Irwin SA et al (2002) Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am J Med Genet 111(2):140–146

    Article  PubMed  Google Scholar 

  228. Nimchinsky EA et al (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21(14):5139–5146

    CAS  PubMed  Google Scholar 

  229. Sahin M (2012) Targeted treatment trials for tuberous sclerosis and autism: no longer a dream. Curr Opin Neurobiol 22(5):895–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kwiatkowski DJ, Manning BD (2005) Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 14(Spec No 2):R251–R258

    Google Scholar 

  231. Wullschleger S et al (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  CAS  PubMed  Google Scholar 

  232. Chevere-Torres I et al (2012) Metabotropic glutamate receptor-dependent long-term depression is impaired due to elevated ERK signaling in the DeltaRG mouse model of tuberous sclerosis complex. Neurobiol Dis 45(3):1101–1110

    Article  CAS  PubMed  Google Scholar 

  233. Auerbach BD et al (2011) Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480(7375):63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Bastide MF et al (2015) Pathophysiology of l-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168

    Article  CAS  PubMed  Google Scholar 

  235. Picconi B et al (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 970:553–572

    Article  CAS  PubMed  Google Scholar 

  236. Calabresi P et al (2000) Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity? Ann Neurol 47(4 Suppl 1):S60–S68. discussion S68–S69

    CAS  PubMed  Google Scholar 

  237. Fox SH et al (2011) The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson's disease. Mov Disord 26(S3):S2–S41

    Article  PubMed  Google Scholar 

  238. Duty S (2010) Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson’s disease. Br J Pharmacol 161(2):271–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Austin PJ et al (2010) Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson's disease. Br J Pharmacol 160(7):1741–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Lopez S et al (2012) Antiparkinsonian action of a selective group III mGlu receptor agonist is associated with reversal of subthalamonigral overactivity. Neurobiol Dis 46(1):69–77

    Article  CAS  PubMed  Google Scholar 

  241. Ouattara B et al (2011) Metabotropic glutamate receptor type 5 in levodopa-induced motor complications. Neurobiol Aging 32(7):1286–1295

    Article  CAS  PubMed  Google Scholar 

  242. Morin N et al (2013) MPEP, an mGlu5 receptor antagonist, reduces the development of L-DOPA-induced motor complications in de novo parkinsonian monkeys: biochemical correlates. Neuropharmacology 66:355–364

    Article  CAS  PubMed  Google Scholar 

  243. Morin N et al (2013) Chronic treatment with MPEP, an mGlu5 receptor antagonist, normalizes basal ganglia glutamate neurotransmission in L-DOPA-treated parkinsonian monkeys. Neuropharmacology 73:216–231

    Article  CAS  PubMed  Google Scholar 

  244. Rylander D et al (2010) A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis 39(3):352–361

    Article  CAS  PubMed  Google Scholar 

  245. Litim N. et al. (2016) Metabotropic glutamate receptors as therapeutic targets in Parkinson’s disease: an update from the last 5 years of research. Neuropharmacology. doi:10.1016/j.neuropharm.2016.03.036

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen J. Gregory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sengmany, K., Gregory, K.J. (2018). Drugs to Tune Up Glutamatergic Systems: Modulators of Glutamate Metabotropic Receptors. In: Parrot, S., Denoroy, L. (eds) Biochemical Approaches for Glutamatergic Neurotransmission. Neuromethods, vol 130. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7228-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7228-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7227-2

  • Online ISBN: 978-1-4939-7228-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics