Skip to main content

Positron Emission Tomography of Metabotropic Glutamate Receptors

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 130))

Abstract

Positron emission tomography (PET) is a noninvasive molecular imaging technique which shows continually growing applications in both preclinical and clinical research besides its well established use in routine clinical practice. PET is a highly multidisciplinary technique requiring specialized knowledge and skills from teams of Chemists, Physicists, and Biologists/Medical staff. In this chapter, we discuss PET methodology through explanation of the general principles governing PET, the requirements for successful PET imaging and finally examples of application of PET in studying metabotropic glutamate receptors (mGlu). Unlike, groups II and III, group I of mGlu receptors has been extensively studied for which reason herein, mGlu5 and mGlu1 will be the focus of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ametamey SM, Honer M, Schubiger PA (2008) Molecular Imaging with PET. Chem Rev 108:1501–1516

    Article  CAS  PubMed  Google Scholar 

  2. Sephton SM, Ametamey SM (2013) Positron emission tomography agents. Future Sci. doi:10.4155/EBO.12.504

  3. Ziegler SI (2005) Positron emission tomography: principles, technology, and recent developments. Nucl Phys A 752:679–687

    Article  Google Scholar 

  4. Zhang Y, Fox GB (2012) PET imaging for receptor occupancy: meditations on calculation and simplification. J Biomed Res 26:69–76

    Article  PubMed  PubMed Central  Google Scholar 

  5. Heiss W-D, Herholz K (2006) Brain receptor imaging. J Nucl Med 47:302–312

    CAS  PubMed  Google Scholar 

  6. Conn PJ, Pin J-P (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  PubMed  Google Scholar 

  7. Masu M, Tanabe Y, Tsuchida K et al (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349:760–765

    Article  CAS  PubMed  Google Scholar 

  8. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pin J-P, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  CAS  PubMed  Google Scholar 

  10. Tanabe Y, Masu M, Ishii T et al (1992) A family of metabotropic glutamate receptors. Neuron 8:169–179

    Article  CAS  PubMed  Google Scholar 

  11. Nicoletti F, Bockaert J, Collingridge GL et al (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60:1017–1041

    Article  CAS  PubMed  Google Scholar 

  12. Pillai RLI, Tipre DN (2016) Metabotropic glutamate receptor 5 – a promising target in drug development and neuroimaging. Eur J Nucl Med Mol Imaging 43:1151–1170

    Article  CAS  PubMed  Google Scholar 

  13. Poels EM, Kegeles LS, Kantrowitz JT et al (2014) Imaging glutamate in schizophrenia: review of findings and implications for drug discovery. Mol Psychiatry 19:20–29

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez-Pernaute R, Wang J-Q, Kuruppu D et al (2008) Enhanced binding of metabotropic glutamate receptor type 5 (mGluR5) PET tracers in the brain of parkinsonian primates. Neuroimage 42:248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swanson CJ, Bures M, Johnson MP et al (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 4:131–144

    Article  CAS  PubMed  Google Scholar 

  16. Tokunaga M, Seneca N, Shin R-M et al (2009) Neuroimaging and physiological evidence for involvement of glutamatergic transmission in regulation of the striatal dopaminergic system. J Neurosci 29:1887–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arsenault D, Coulombe K, Zhu A et al (2015) Loss of metabotropic glutamate receptor 5 function on peripheral benzodiazepine receptor in mice prenatally exposed to LPS. PLoS One 10:e0142093

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brownell A-L, Kuruppu D, Kil K-E et al (2015) PET imaging studies show enhanced expression of mGluR5 and inflammatory response during progressive degeneration in ALS mouse model expressing SOD1-G93A gene. J Neuroinflammation 12:217

    Article  PubMed  PubMed Central  Google Scholar 

  19. Majo VJ, Prabhakaran J, Mann JJ et al (2013) PET and SPECT tracers for glutamate receptors. Drug Discov Today 18:173–184

    Article  CAS  PubMed  Google Scholar 

  20. Mu L, Ametamey SM (2014) Current radioligands for the PET imaging of metabotropic glutamate receptors. PET and SPECT of neurobiological systems. Springer, Berlin, Heidelberg, pp 409–443

    Google Scholar 

  21. Ribeiro MF, Paquet M, Cregan SP et al (2010) Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol Disord Drug Targets 9:574–595

    Article  CAS  PubMed  Google Scholar 

  22. Eckelman WC, Kilbourn MR, Mathis CA (2006) Discussion of targeting proteins in vivo: in vitro guidelines. Nucl Med Biol 33:449–451

    Article  CAS  PubMed  Google Scholar 

  23. Kerns EH, Di L (2008) Drug-like properties: concepts, structure design and methods: ADME to toxicity optimization. Academic Press, London

    Google Scholar 

  24. Wenlock MC, Potter T, Barton P et al (2011) A method for measuring the lipophilicity of compounds in mixtures of 10. J Biomol Screen 16:348–355

    Article  CAS  PubMed  Google Scholar 

  25. Rutkowska E, Pajak K, Jóźwiak K (2013) Lipophilicity-methods of determination and its role in medicinal chemistry. Acta Pol Pharm 70:3–18

    CAS  PubMed  Google Scholar 

  26. De Goeij JJM, Bonardi ML (2005) How do we define the concepts specific activity, radioactive concentration, carrier, carrier-free and no-carrier-added? J Radioanal Nucl Chem 263:13–18

    Article  Google Scholar 

  27. Eckelman WC, Mathis CA (2006) Targeting proteins in vivo: in vitro guidelines. Nucl Med Biol 33:161–164

    Article  CAS  PubMed  Google Scholar 

  28. Ferraguti F, Crepaldi L, Nicoletti F (2008) Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 60:536–581

    Article  CAS  PubMed  Google Scholar 

  29. Steckler T, Oliveira AFM, Van Dyck C et al (2005) Metabotropic glutamate receptor 1 blockade impairs acquisition and retention in a spatial water maze task. Behav Brain Res 164:52–60

    Article  CAS  PubMed  Google Scholar 

  30. Zanotti-Fregonara P, Barth VN, Zoghbi SS et al (2013) 11C-LY2428703, a positron emission tomographic radioligand for the metabotropic glutamate receptor 1, is unsuitable for imaging in monkey and human brains. EJNMMI Res 3:47

    Article  PubMed  PubMed Central  Google Scholar 

  31. Toyohara J, Sakata M, Oda K et al (2013) Initial human PET studies of metabotropic glutamate receptor type 1 ligand 11C-ITMM. J Nucl Med 54:1302–1307

    Article  CAS  PubMed  Google Scholar 

  32. Toyohara J, Sakata M, Fujinaga M et al (2013) Preclinical and the first clinical studies on [11C]ITMM for mapping metabotropic glutamate receptor subtype 1 by positron emission tomography. Nucl Med Biol 40:214–220

    Article  CAS  PubMed  Google Scholar 

  33. Zanotti-Fregonara P, Xu R, Zoghbi SS et al (2016) The PET radioligand 18F-FIMX images and quantifies metabotropic glutamate receptor 1 in proportion to the regional density of its gene transcript in human brain. J Nucl Med 57:242–247

    Article  CAS  PubMed  Google Scholar 

  34. Ametamey SM, Kessler LJ, Honer M et al (2006) Radiosynthesis and preclinical evaluation of 11C-ABP688 as a probe for imaging the metabotropic glutamate receptor subtype 5. J Nucl Med 47:698–705

    CAS  PubMed  Google Scholar 

  35. Ametamey SM, Treyer V, Streffer J et al (2007) Human PET studies of metabotropic glutamate receptor subtype 5 with 11C-ABP688. J Nucl Med 48:247–252

    CAS  PubMed  Google Scholar 

  36. Mu L, Schubiger AP, Ametamey SM (2010) Radioligands for the PET imaging of metabotropic glutamate receptor subtype 5 (mGluR5). Curr Top Med Chem 10:1558–1568

    Article  CAS  PubMed  Google Scholar 

  37. Gasparini F, Lingenhöhl K, Stoehr N et al (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38:1493–1503

    Article  CAS  PubMed  Google Scholar 

  38. Shetty HU, Zoghbi SS, Sime FG et al (2008) Radiodefluorination of 3-fluoro-5-(2-(2-[18F](fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile ([18F]SP203), a radioligand for imaging brain metabotropic glutamate subtype-5 receptors with positron emission tomography, occurs by glutathionylation in rat brain. J Pharmacol Exp Ther 327:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Siméon FG, Brown AK, Zoghbi SS et al (2007) Synthesis and simple 18F-labeling of 3-fluoro-5-(2-(2-(fluoromethyl)thiazol-4-Yl)ethynyl)benzonitrile as a high affinity radioligand for imaging monkey brain metabotropic glutamate subtype-5 receptors with positron emission tomography. J Med Chem 50:3256–3266

    Article  PubMed  Google Scholar 

  40. Kimura Y, Simeon FG, Zoghbi SS et al (2012) Quantification of metabotropic glutamate subtype 5 receptors in the brain by an equilibrium method using 18F-SP203. NeuroImage 59:2124–2130

    Article  CAS  PubMed  Google Scholar 

  41. Wong DF, Waterhouse R, Kuwabara H et al (2013) 18F-FPEB, a PET radiopharmaceutical for quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety, biokinetics, and radiation dosimetry. J Nucl Med 54:388–396

    Article  CAS  PubMed  Google Scholar 

  42. Wang J-Q, Tueckmantel W, Zhu A et al (2007) Synthesis and preliminary biological evaluation of 3-[(18)F]fluoro-5-(2-pyridinylethynyl)benzonitrile as a PET radiotracer for imaging metabotropic glutamate receptor subtype 5. Synapse 61:951–961

    Article  CAS  PubMed  Google Scholar 

  43. Sephton SM, Mu L, Dragic M et al (2013) Synthesis and in vitro evaluation of E- and Z-geometrical isomers of PSS232 as potential metabotropic glutamate receptors subtype 5 (mGlu 5) binders. Synth 45:1877–1885

    Article  CAS  Google Scholar 

  44. Sephton SM, Herde AM, Mu L et al (2014) Preclinical evaluation and test–retest studies of [18F]PSS232, a novel radioligand for targeting metabotropic glutamate receptor 5 (mGlu5). Eur J Nucl Med Mol Imaging 42:128–137

    Article  PubMed  Google Scholar 

  45. Müller Herde A, Keller C, Milicevic Sephton S et al (2015) Quantitative positron emission tomography of mGluR5 in rat brain with [ 18 F]PSS232 at minimal invasiveness and reduced model complexity. J Neurochem 133:330–342

    Article  PubMed  Google Scholar 

  46. Patil ST, Zhang L, Martenyi F et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 13:1102–1107

    Article  CAS  PubMed  Google Scholar 

  47. Wang J-Q, Zhang Z, Kuruppu D et al (2012) Radiosynthesis of PET radiotracer as a prodrug for imaging group II metabotropic glutamate receptors in vivo. Bioorg Med Chem Lett 22:1958–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Waterhouse RN, Schmidt ME, Sultana A et al (2003) Evaluation of [3H]LY341495 for labeling group II metabotropic glutamate receptors in vivo. Nucl Med Biol 30:187–190

    Article  CAS  PubMed  Google Scholar 

  49. Celen S, Koole M, Alcazar J et al (2012) Preliminary biological evaluation of [11C]JNJ42491293 as a radioligand for PET imaging of mGluR2 in brain. J Nucl Med 53:286–286

    Google Scholar 

  50. Laere KV, Koole M, Hoon J d et al (2012) Biodistribution, dosimetry and kinetic modeling of [11C]JNJ-42491293, a PET tracer for the mGluR2 receptor in the human brain. J Nucl Med 53:355–355

    Google Scholar 

  51. Andrés J-I, Alcázar J, Cid JM et al (2012) Synthesis, evaluation, and radiolabeling of new potent positive allosteric modulators of the metabotropic glutamate receptor 2 as potential tracers for positron emission tomography imaging. J Med Chem 55:8685–8699

    Article  PubMed  Google Scholar 

  52. Fuchigami T, Nakayama M, Yoshida S (2015) Development of PET and SPECT probes for glutamate receptors. Sci World J 2015:716514

    Article  Google Scholar 

  53. Wang J-Q, Kuruppu D, Brownell A-L (2008) Radiosynthesis of (±)-N-(P-[11C]tolyl)-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide ([11C]methyl-PHCCC) as a specific mGluR4 PET ligand. J Nucl Med 49:288

    Google Scholar 

  54. Engers DW, Niswender CM, Weaver CD et al (2009) Synthesis and evaluation of a series of heterobiarylamides that are centrally penetrant metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulators (PAMs). J Med Chem 52:4115–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fujinaga M, Yamasaki T, Nengaki N et al (2016) Radiosynthesis and evaluation of 5-methyl-N-(4-[11C]methylpyrimidin-2-Yl)-4-(1H-pyrazol-4-Yl)thiazol-2-amine ([11C]ADX88178) as a novel radioligand for imaging of metabotropic glutamate receptor subtype 4 (mGluR4). Bioorg Med Chem Lett 26:370–374

    Article  CAS  PubMed  Google Scholar 

  56. Kil K-E, Zhang Z, Jokivarsi K et al (2013) Radiosynthesis of N-(4-chloro-3-[11C]methoxyphenyl)-2-picolinamide ([11C]ML128) as a PET radiotracer for metabotropic glutamate receptor subtype 4 (mGlu4). Bioorg Med Chem 21:5955–5962

    Article  CAS  PubMed  Google Scholar 

  57. Kil K-E, Poutiainen P, Zhang Z et al (2016) Synthesis and evaluation of N-(methylthiophenyl)picolinamide derivatives as PET radioligands for metabotropic glutamate receptor subtype 4. Bioorg Med Chem Lett 26:133–139

    Article  CAS  PubMed  Google Scholar 

  58. Nakamura M, Kurihara H, Suzuki G et al (2010) Isoxazolopyridone derivatives as allosteric metabotropic glutamate receptor 7 antagonists. Bioorg Med Chem Lett 20:726–729

    Article  CAS  PubMed  Google Scholar 

  59. Yamasaki T, Kumata K, Yui J et al (2013) Synthesis and evaluation of [11C]MMPIP as a potential radioligand for imaging of metabotropic glutamate 7 receptor in the brain. EJNMMI Res 3:54

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hutchins GD, Miller MA, Soon VC et al (2008) Small animal PET imaging. ILAR J 49:54–65

    Article  CAS  PubMed  Google Scholar 

  61. Blokland JA, Trindev P, Stokkel MP et al (2002) Positron emission tomography: a technical introduction for clinicians. Eur J Radiol 44:70–75

    Article  PubMed  Google Scholar 

  62. Alstrup AKO, Smith DF (2013) Anaesthesia for positron emission tomography scanning of animal brains. Lab Anim 47:12–18

    Article  CAS  PubMed  Google Scholar 

  63. Hildebrandt IJ, Su H, Weber WA (2008) Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49:17–26

    Article  CAS  PubMed  Google Scholar 

  64. Kuntner C, Stout D (2014) Quantitative preclinical PET imaging: opportunities and challenges. Front Phys 2:12

    Article  Google Scholar 

  65. Morris ED, Enders CJ, Schmidt KC et al (2004) Kinetic modeling in positron emission tomography. In: Wernick MN, Aarsvold JN (eds) Emission tomography, 1st edn. Elsevier, Amsterdam, pp 499–540

    Chapter  Google Scholar 

  66. Schmidt KC, Turkheimer FE (2004) Kinetic modeling in positron emission tomography. Q J Nucl Med 46:70–85

    Google Scholar 

  67. Valk PE, Bailey DL, Townsend DW, Maisey MN (2003) Positron emission tomography: basic science and clinical practice. Springer, London, pp 147–149

    Google Scholar 

  68. Elmenhorst D, Aliaga A, Bauer A et al (2012) Test-retest stability of cerebral mGluR5 quantification using [11C]ABP688 and positron emission tomography in rats. Synapse 66:552–560

    Article  CAS  PubMed  Google Scholar 

  69. Choi H, Kim YK, Oh SW et al (2014) In vivo imaging of mGluR5 changes during epileptogenesis using [11C]ABP688 PET in pilocarpine-induced epilepsy rat model. PLoS One 9:e92765

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zimmer ER, Parent MJ, Leuzy A et al (2015) Imaging in vivo glutamate fluctuations with [(11)C]ABP688: a GLT-1 challenge with ceftriaxone. J Cereb Blood Flow Metab 35:1169–1174

    Article  CAS  PubMed  Google Scholar 

  71. Mathews WB, Kuwabara H, Stansfield K et al (2014) Dose-dependent, saturable occupancy of the metabotropic glutamate subtype 5 receptor by fenobam as measured with [11C]ABP688 PET imaging. Synapse 68:565–573

    Article  CAS  Google Scholar 

  72. Miyake N, Skinbjerg M, Easwaramoorthy B et al (2011) Imaging changes in glutamate transmission in vivo with the metabotropic glutamate receptor 5 tracer [11C] ABP688 and N-acetylcysteine challenge. Biol Psychiatry 69:822–824

    Article  CAS  PubMed  Google Scholar 

  73. Sandiego CM, Nabulsi N, Lin S-F et al (2013) Studies of the metabotropic glutamate receptor 5 radioligand [ 11 C]ABP688 with N-acetylcysteine challenge in rhesus monkeys. Synapse 67:489–501

    Article  CAS  PubMed  Google Scholar 

  74. DeLorenzo C, Kumar JSD, Mann JJ et al (2011) In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [11C]ABP688. J Cereb Blood Flow Metab 31:2169–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. DeLorenzo C, Sovago J, Gardus J et al (2015) Characterization of brain mGluR5 binding in a pilot study of late-life major depressive disorder using positron emission tomography and [11C]ABP688. Transl Psychiatry 5:e693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dubois JM, Rousset OG, Rowley J et al (2016) Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [11C]ABP688 PET. Eur J Nucl Med Mol Imaging 43:152–162

    Google Scholar 

  77. DeLorenzo C, DellaGioia N, Bloch M et al (2015) In vivo ketamine-induced changes in [11C]ABP688 binding to metabotropic glutamate receptor subtype 5. Biol Psychiatry 77:266–275

    Article  CAS  PubMed  Google Scholar 

  78. Martinez D, Slifstein M, Nabulsi N et al (2014) Imaging glutamate homeostasis in cocaine addiction with the metabotropic glutamate receptor 5 positron emission tomography radiotracer [11C]ABP688 and magnetic resonance spectroscopy. Biol Psychiatry 75:165–171

    Article  CAS  PubMed  Google Scholar 

  79. Milella MS, Marengo L, Larcher K et al (2014) Limbic system mGluR5 availability in cocaine dependent subjects: a high-resolution PET [11C]ABP688 study. Neuroimage 98:195–202

    Article  CAS  PubMed  Google Scholar 

  80. Kågedal M, Cselényi Z, Nyberg S et al (2013) A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066 — estimating occupancy in the absence of a reference region. NeuroImage 82:160–169

    Article  PubMed  Google Scholar 

  81. Leuzy A, Zimmer ER, Dubois J et al (2016) In vivo characterization of metabotropic glutamate receptor type 5 abnormalities in behavioral variant FTD. Brain Struct Funct 221:1387–1402

    Article  CAS  PubMed  Google Scholar 

  82. Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006

    CAS  PubMed  Google Scholar 

  83. Gordon CJ (1993) Temperature regulation in laboratory rodents. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511565595

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selena Milicevic Sephton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sephton, S.M. (2018). Positron Emission Tomography of Metabotropic Glutamate Receptors. In: Parrot, S., Denoroy, L. (eds) Biochemical Approaches for Glutamatergic Neurotransmission. Neuromethods, vol 130. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7228-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7228-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7227-2

  • Online ISBN: 978-1-4939-7228-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics