Skip to main content

Light Microscopy, Transmission Electron Microscopy, and Immunohistochemistry Protocols for Studying Photorespiration

Part of the Methods in Molecular Biology book series (MIMB,volume 1653)

Abstract

High-resolution images obtained from plant tissues processed for light microscopy, transmission electron microscopy, and immunohistochemistry have provided crucial links between plant subcellular structure and physiology during photorespiration as well as the impact of photorespiration on plant evolution and development. This chapter presents established protocols to guide researchers in the preparation of plant tissues for high-resolution imaging with a light and transmission electron microscope and detection of proteins using immunohistochemistry. Discussion of concepts and theory behind each step in the process from tissue preservation to staining of resin-embedded tissues is included to enhance the understanding of all steps in the procedure. We also include a brief protocol for quantification of cellular parameters from high-resolution images to help researchers rigorously test hypotheses.

Key words

  • Light microscopy
  • Transmission electron microscopy
  • High-resolution microscopy
  • Immunohistochemistry
  • Photorespiration
  • Chloroplasts
  • Mitochondria
  • Peroxisomes

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7225-8_17
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7225-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tolbert NE (1971) Microbodies – peroxisomes and glyoxysomes. Ann rev. Plant Physiol 22:45–74

    CAS  CrossRef  Google Scholar 

  2. Tolbert NE (1973) Glycolate biosynthesis. In: Horecker BL, Stadtman ER (eds) Current topics in cellular regulation, vol 7. Academic Press, New York, pp 21–50

    Google Scholar 

  3. Frederick SE, Newcomb EH (1969) Microbody-like organelles in leaf cells. Science 163:1353–1355

    CAS  CrossRef  PubMed  Google Scholar 

  4. Frederick SE, Newcomb EH (1971) Ultrastructure and distribution of microbodies in leaves of grasses with and without CO2-photorespiration. Planta 96:152–174

    CAS  CrossRef  PubMed  Google Scholar 

  5. Hylton CM, Rawsthorne S, Smith AM, Jones DA, Woolhouse HW (1988) Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3–C4 intermediate species. Planta 175:452–459

    CAS  CrossRef  PubMed  Google Scholar 

  6. Sage TL, Busch FA, Johnson DC, Friesen PC, Stinson CR, Stata M, Sultmanis S, Rahman BA, Rawsthorne S, Sage RF (2013) Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria. Plant Physiol 163:1266–1276

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF, Ludwig M, Sage TL (2016) C3–C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis. J Exp Bot 67:3065–3078

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36:200–212

    CAS  CrossRef  PubMed  Google Scholar 

  9. Timm S, Wittmiss M, Gamlien S, Ewald R, Florian A, Frank M, Wirtz M, Hell R, Fernie AR, Bauwe H (2015) Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. Plant Cell 27:1968–1984

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Lin HC, Karki S, Coe RA, Bagha S, Khoshravesh R, Balahadia CP, Ver Sagun J, Tapia R, Israel WK, Montecillo F, de Luna A, Danila FR, Lazaro A, Realubit CM, Acoba MG, Sage TL, von Caemmerer S, Furbank RT, Cousins AB, Hibberd JM, Quick WP, Covshoff S (2016) Rice (Oryza sativa L. cv. IR64) plants with a knockdown in GDCH can survive in ambient air but exhibit a photorespiratory deficient phenotype. Plant Cell Physiol 57:919–932

    CAS  CrossRef  PubMed  Google Scholar 

  11. Stata M, Sage TL, Rennie TD, Khoshravesh R, Sultmanis S, Khaikin Y, Ludwig M, Sage RF (2014) Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants. Plant Cell Environ 37:2587–2600

    CAS  CrossRef  PubMed  Google Scholar 

  12. Stata M, Sage TL, Hoffman N, Covshoff S, Ka-Shu Wong G, Sage RF (2016) Mesophyll chloroplast investment in C3, C4 and C2 species of the genus Flaveria. Plant Cell Physiol 57:904–918

    CAS  CrossRef  PubMed  Google Scholar 

  13. Schulze S, Mallmann J, Burscheidt J, Koczor M, Streubel M, Bauwe H, Gowik U, Westhoff P (2013) Evolution of C4 photosynthesis in the genus Flaveria: establishment of a photorespiratory CO2 pump. Plant Cell 25:2522–2535

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Hanson MR, Köhler RH (2001) GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot 52:529–539

    Google Scholar 

  15. Sankaranarayanan S, Samuel MA (2015) Guiding principles for live cell imaging of plants using confocal microscopy. In: Yeung ECT, Stasolla C, Sumner MJ, Huang BQ (eds) Plant microtechniques and protocols. Springer, pp 213–224

    Google Scholar 

  16. Jamai A, Salomé, Schilling SH, Weber APM, McClung CR (2009) Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. Plant Cell 21:595–606

    Google Scholar 

  17. Rademacher N, Kern R, Fujiwara T, Mettler-Altmann T, Miyagishima S, Hagemann M, Eisenhut M, Weber APM (2016) Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions. J Ex Bot 67:3165–3175

    Google Scholar 

  18. Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  19. Bozzola JJ, Russell LD (1992) Electron microscopy: principles and techniques for biologists. Jones and Bartlett Publishers, MA

    Google Scholar 

  20. Lowe J (1996) Techniques in neuropathology. In: Bancroft JD, Sevens A (eds) Theory and practice of histological techniques. Churchill Livingstone, New York

    Google Scholar 

  21. Kiernan JA (1990) Histological and histochemical methods: theory and practice. Pergamon Press, New York

    Google Scholar 

  22. Oliver C, Jamur MC (2010) Overview of antibodies for immunochemistry. Methods Mol Biol 588:3–9

    CAS  CrossRef  PubMed  Google Scholar 

  23. Oliver C (2010) Use of immunogold with silver enhancement. Methods Mol Biol 588:311–316

    CAS  CrossRef  PubMed  Google Scholar 

  24. Khoshravesh R, Akhani H, Sage TL, Nordenstam B, Sage RF (2012) Phylogeny and photosynthetic pathway distribution in Anticharis Endl. (Scrophylariaceae). J Exp Bot 63:5645–5658

    CAS  CrossRef  PubMed  Google Scholar 

  25. Ellis EA (2006) Corrected formulation for Spurr low viscosity embedding medium using the replacement epoxide ERL 4221. Microsc Microanal 12(Suppl 2). doi:10.1017/S1431927606062660

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy L. Sage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Khoshravesh, R., Lundsgaard-Nielsen, V., Sultmanis, S., Sage, T.L. (2017). Light Microscopy, Transmission Electron Microscopy, and Immunohistochemistry Protocols for Studying Photorespiration. In: Fernie, A., Bauwe, H., Weber, A. (eds) Photorespiration. Methods in Molecular Biology, vol 1653. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7225-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7225-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7224-1

  • Online ISBN: 978-1-4939-7225-8

  • eBook Packages: Springer Protocols