Abstract
The introduction of two alternative glycolate catabolic pathways in the chloroplasts of Arabidopsis thaliana rendered plants with increased biomass. To introduce these synthetic pathways, the selected genes were stepwise integrated in the nuclear genome of wild-type plants. These plants were transformed by Agrobacterium tumefaciens carrying the binary vectors using the floral dip method. Selection of transformants was conducted using different selection agents and the expression of the transgenes was confirmed by PCR and enzyme activity measurements.
Key words
- PCR amplification
- Binary vectors
- Arabidopsis transformation
- Agrobacterium tumefaciens
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Maurino VG, Peterhansel C (2010) Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol 13:249–256
Maier A, Fahnenstich H, von Caemmerer S, Engqvist MKM, Weber APM, Flugge UI, Maurino VG (2012) Transgenic introduction of a glycolate oxidative cycle into A-thaliana chloroplasts leads to growth improvement. Front Plant Sci 3:38
Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Peterhansel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599
Fahnenstich H, Scarpeci TE, Valle EM, Flugge UI, Maurino VG (2008) Generation of hydrogen peroxide in chloroplasts of Arabidopsis overexpressing glycolate oxidase as an inducible system to study oxidative stress. Plant Physiol 148:719–729
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345
de Kok S, Stanton LH, Slaby T, Durot M, Holmes VF, Patel KG, Platt D, Shapland EB, Serber Z, Dean J, Newman JD, Chandran SS (2014) Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol 3:97–106
Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4:e6441
Zhang Y, Werling U, Edelmann W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40:e55
Fahnenstich H, Saigo M, Niessen M, Zanor MI, Andreo CS, Fernie AR, Drincovich MF, Flugge UI, Maurino VG (2007) Alteration of organic acid metabolism in Arabidopsis overexpressing the maize C(4)NADP-malic enzyme causes accelerated senescence during extended darkness. Plant Physiol 145:640–652
Yamaguchi K, Nishimura M (2000) Reduction to below threshold levels of glycolate oxidase activities in transgenic tobacco enhances photoinhibition during irradiation. Plant Cell Physiol 41:1397–1406
Smith CV, Huang CC, Miczak A, Russell DG, Sacchettini JC, Honer zu Bentrup K (2003) Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J Biol Chem 278:1735–1743
Ferri G, Comerio G, Iadarola P, Zapponi MC, Speranza ML (1978) Subunit structure and activity of glyceraldehyde-3-phosphate dehydrogenase from spinach chloroplasts. Biochim Biophys Acta 522:19–31
Koncz C, Schell J (1986) The promoter of Tl-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
Acknowledgements
This work was supported by grants of the Deutsche Forschungsgemeinschaft, MA2379/4-1, FOR 1186, and EXC 1028 to V.G.M.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media LLC
About this protocol
Cite this protocol
Engqvist, M.K.M., Maurino, V.G. (2017). Metabolic Engineering of Photorespiration. In: Fernie, A., Bauwe, H., Weber, A. (eds) Photorespiration. Methods in Molecular Biology, vol 1653. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7225-8_10
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7225-8_10
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7224-1
Online ISBN: 978-1-4939-7225-8
eBook Packages: Springer Protocols