Bioluminescence Monitoring of Promoter Activity In Vitro and In Vivo

  • Juliette M. K. M. Delhove
  • Rajvinder Karda
  • Kate E. Hawkins
  • Lorna M. FitzPatrick
  • Simon N. Waddington
  • Tristan R. McKayEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1651)


The application of luciferase reporter genes to provide quantitative outputs for the activation of promoters is a well-established technique in molecular biology. Luciferase catalyzes an enzymatic reaction, which in the presence of the substrate luciferin produces photons of light relative to its molar concentration. The luciferase transgene can be genetically inserted at the first intron of a target gene to act as a surrogate for the gene’s endogenous expression in cells and transgenic mice. Alternatively, promoter sequences can be excised and/or amplified from genomic sources or constructed de novo and cloned upstream of luciferase in an expression cassette transfected into cells. More recently, the development of synthetic promoters where the essential components of an RNA polymerase binding site and transcriptional start site are fused with various upstream regulatory sequences are being applied to drive reporter gene expression. We have developed a high-throughput cloning strategy to develop lentiviral luciferase reporters driven by transcription factor activated synthetic promoters. Lentiviruses integrate their payload cassette into the host cell genome, thereby facilitating the study of gene expression not only in the transduced cells but also within all subsequent daughter cells. In this manuscript we describe the design, vector construction, lentiviral transduction, and luciferase quantitation of transcription factor activated reporters (TFARs) in vitro and in vivo.

Key words

Luciferase Lentivirus Promoter Transcription factor Bioluminescence 



JMKMD and SNW were funded by the ERC grant Somabio (260862), TRM and SNW were funded by the NC3Rs (NC/L001780/1) and TRM was also funded by EU Horizon2020 grant BATCure (666918).


  1. 1.
    de Wet JR, Wood KV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci U S A 82:7870–7873Google Scholar
  2. 2.
    Seliger HH, McElroy WD (1964) The colors of firefly bioluminescence: enzyme configuration and species specificity. Proc Natl Acad Sci U S A 52:75–81Google Scholar
  3. 3.
    Lipshutz GS, Gruber CA, Cao Y, Hardy J, Contag CH, Gaensler KM (2001) In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther 3:284–292Google Scholar
  4. 4.
    Rice BW, Cable MD, Nelson MB (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6:432–440Google Scholar
  5. 5.
    Shabalina SA, Spiridonov NA, Kashina A (2013) Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res 41:2073–2094CrossRefGoogle Scholar
  6. 6.
    Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M (2006) High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol 4:e180CrossRefGoogle Scholar
  7. 7.
    Branchini BR, Ablamsky DM, Davis AL, Southworth TL, Butler B, Fan F, Jathoul AP, Pule MA (2010) Red-emitting luciferases for bioluminescence reporter and imaging applications. Anal Biochem 396:290–297Google Scholar
  8. 8.
    Titushin MS, Markova SV, Frank LA, Malikova NP, Stepanyuk GA, Lee J, Vysotski ES (2008) Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase. Photochem Photobiol Sci 7:189–196CrossRefGoogle Scholar
  9. 9.
    Viviani VR, Bechara EJ, Ohmiya Y (1999) Cloning, sequence analysis, and expression of active Phrixothrix railroad-worms luciferases: relationship between bioluminescence spectra and primary structures. Biochemistry 38:8271–8279CrossRefGoogle Scholar
  10. 10.
    Viviani VR, Silva AC, Perez GL, Santelli RV, Bechara EJ, Reinach FC (1999) Cloning and molecular characterization of the cDNA for the Brazilian larval click-beetle Pyrearinus termitilluminans luciferase. Photochem Photobiol 70:254–260CrossRefGoogle Scholar
  11. 11.
    Charbonneau H, Walsh KA, McCann RO, Prendergast FG, Cormier MJ, Vanaman TC (1985) Amino acid sequence of the calcium-dependent photoprotein aequorin. Biochemistry 24:6762–6771CrossRefGoogle Scholar
  12. 12.
    Lorenz WW, McCann RO, Longiaru M, Cormier MJ (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A 88:4438–4442CrossRefGoogle Scholar
  13. 13.
    Morin JG (2011) Based on a review of the data, use of the term 'cypridinid' solves the Cypridina/Vargula dilemma for naming the constituents of the luminescent system of ostracods in the family Cypridinidae. Luminescence 26:1–4CrossRefGoogle Scholar
  14. 14.
    Thompson EM, Nagata S, Tsuji FI (1990) Vargula hilgendorfii luciferase: a secreted reporter enzyme for monitoring gene expression in mammalian cells. Gene 96:257–262CrossRefGoogle Scholar
  15. 15.
    Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857CrossRefGoogle Scholar
  16. 16.
    Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA (2003) Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 22:5813–5827CrossRefGoogle Scholar
  17. 17.
    Pessara U, Koch N (1990) Tumor necrosis factor alpha regulates expression of the major histocompatibility complex class II-associated invariant chain by binding of an NF-kappa B-like factor to a promoter element. Mol Cell Biol 10:4146–4154CrossRefGoogle Scholar
  18. 18.
    Buckley SM, Delhove JM, Perocheau DP, Karda R, Rahim AA, Howe SJ, Ward NJ, Birrell MA, Belvisi MG, Arbuthnot P et al (2015) In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters. Sci Rep 5:11842Google Scholar
  19. 19.
    Hawkins KE, Joy S, Delhove JM, Kotiadis VN, Fernandez E, Fitzpatrick LM, Whiteford JR, King PJ, Bolanos JP, Duchen MR et al (2016) NRF2 orchestrates the metabolic shift during induced pluripotent stem cell reprogramming. Cell Rep 14(8):1883–1891CrossRefGoogle Scholar
  20. 20.
    Ciana P, Di Luccio G, Belcredito S, Pollio G, Vegeto E, Tatangelo L, Tiveron C, Maggi A (2001) Engineering of a mouse for the in vivo profiling of estrogen receptor activity. Mol Endocrinol 15:1104–1113CrossRefGoogle Scholar
  21. 21.
    Hubbard AK, Timblin CR, Rincon M, Mossman BT (2001) Use of transgenic luciferase reporter mice to determine activation of transcription factors and gene expression by fibrogenic particles. Chest 120:24S–25SCrossRefGoogle Scholar
  22. 22.
    Wu JC, Sundaresan G, Iyer M, Gambhir SS (2001) Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 4:297–306Google Scholar
  23. 23.
    Carlsen H, Moskaug JO, Fromm SH, Blomhoff R (2002) In vivo imaging of NF-kappa B activity. J Immunol 168:1441–1446CrossRefGoogle Scholar
  24. 24.
    Nivsarkar MS, Buckley SM, Parker AL, Perocheau D, McKay TR, Rahim AA, Howe SJ, Waddington SN (2015) Evidence for contribution of CD4+ CD25+ regulatory T cells in maintaining immune tolerance to human factor IX following perinatal adenovirus vector delivery. J Immunol Res 2015:397879CrossRefGoogle Scholar
  25. 25.
    Ward NJ, Buckley SM, Waddington SN, Vandendriessche T, Chuah MK, Nathwani AC, McIntosh J, Tuddenham EG, Kinnon C, Thrasher AJ et al (2011) Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood 117:798–807CrossRefGoogle Scholar
  26. 26.
    Buckley SM, Howe SJ, Rahim AA, Buning H, McIntosh J, Wong SP, Baker AH, Nathwani A, Thrasher AJ, Coutelle C et al (2008) Luciferin detection after intranasal vector delivery is improved by intranasal rather than intraperitoneal luciferin administration. Hum Gene Ther 19:1050–1056CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Juliette M. K. M. Delhove
    • 1
    • 2
  • Rajvinder Karda
    • 3
  • Kate E. Hawkins
    • 1
  • Lorna M. FitzPatrick
    • 1
    • 4
  • Simon N. Waddington
    • 2
    • 3
  • Tristan R. McKay
    • 1
    • 4
    Email author
  1. 1.Cardiovascular and Cell Sciences Research InstituteSt. George’s University of LondonLondonUK
  2. 2.Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.Gene Transfer Technology Group, Institute for Women’s HealthUniversity College LondonLondonUK
  4. 4.School of Healthcare ScienceManchester Metropolitan UniversityManchesterUK

Personalised recommendations