Advertisement

Light-Responsive Promoters

  • Maximilian Hörner
  • Konrad Müller
  • Wilfried WeberEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1651)

Abstract

Recent advances in the development of light-inducible transgene expression systems have overcome many inherent drawbacks of conventional chemically regulated systems. The latest generation of those light-regulated systems that are specifically responsive to different wavelengths allows spatiotemporal control of gene expression in a so far unprecedented manner.

In this chapter, we first describe the available light-inducible gene expression systems compatible with mammalian cells and explain their underlying mechanisms. Afterward, we give a detailed protocol for the implementation of a UVB light-inducible expression system in mammalian cells.

Key words

Gene expression Light inducible Optogenetics Promoter Synthetic biology Transcription 

Notes

Acknowledgment

This work was supported by the Excellence Initiative of the German Federal and State Governments (EXC-294 and GRC-4) and the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement n° 259043-CompBioMat.

References

  1. 1.
    Ausländer S, Fussenegger M (2013) From gene switches to mammalian designer cells: present and future prospects. Trends Biotechnol 31(3):155–168. doi: 10.1016/j.tibtech.2012.11.006CrossRefPubMedGoogle Scholar
  2. 2.
    Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13(1):21–35. doi: 10.1038/nrg3094CrossRefGoogle Scholar
  3. 3.
    Hörner M, Weber W (2012) Molecular switches in animal cells. FEBS Lett 586(15):2084–2096. doi: 10.1016/j.febslet.2012.02.032CrossRefPubMedGoogle Scholar
  4. 4.
    Crefcoeur RP, Yin R, Ulm R, Halazonetis TD (2013) Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells. Nat Commun 4:1779. doi: 10.1038/ncomms2800
  5. 5.
    Müller K, Engesser R, Schulz S, Steinberg T, Tomakidi P, Weber CC, Ulm R, Timmer J, Zurbriggen MD, Weber W (2013) Multi-chromatic control of mammalian gene expression and signaling. Nucleic Acids Res 41(12):e124. doi: 10.1093/nar/gkt340CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Müller K, Engesser R, Timmer J, Zurbriggen MD, Weber W (2014) Orthogonal optogenetic triple-gene control in mammalian cells. ACS Synth Biol 3(11):796–801. doi: 10.1021/sb500305vCrossRefGoogle Scholar
  7. 7.
    Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M (2015) CRISPR-Cas9-based photoactivatable transcription system. Chem Biol 22(2):169–174. doi: 10.1016/j.chembiol.2014.12.011CrossRefPubMedGoogle Scholar
  8. 8.
    Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11(3):198–200. doi: 10.1038/nchembio.1753CrossRefGoogle Scholar
  9. 9.
    Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463):472–476. doi: 10.1038/nature12466CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE (2009) Induction of protein-protein interactions in live cells using light. Nat Biotechnol 27(10):941–945. doi: 10.1038/nbt.1569CrossRefPubMedGoogle Scholar
  11. 11.
    Polstein LR, Gersbach CA (2012) Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 134(40):16480–16483. doi: 10.1021/ja3065667CrossRefGoogle Scholar
  12. 12.
    Müller K, Zurbriggen MD, Weber W (2014) Control of gene expression using a red- and far-red light-responsive bi-stable toggle switch. Nat Protoc 9(3):622–632. doi: 10.1038/nprot.2014.038CrossRefPubMedGoogle Scholar
  13. 13.
    Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9(3):266–269. doi: 10.1038/nmeth.1892CrossRefPubMedGoogle Scholar
  14. 14.
    Chen X, Li T, Wang X, Yang Y (2015) A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes. Biochem Biophys Res Commun 465(4):769–776. doi: 10.1016/j.bbrc.2015.08.085CrossRefPubMedGoogle Scholar
  15. 15.
    Motta-Mena LB, Reade A, Mallory MJ, Glantz S, Weiner OD, Lynch KW, Gardner KH (2014) An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol 10(3):196–202. doi: 10.1038/nchembio.1430CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Niopek D, Benzinger D, Roensch J, Draebing T, Wehler P, Eils R, Di Ventura B (2014) Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat Commun 5:4404. doi: 10.1038/ncomms5404
  17. 17.
    Beyer HM, Juillot S, Herbst K, Samodelov SL, Müller K, Schamel WW, Römer W, Schäfer E, Nagy F, Strähle U, Weber W, Zurbriggen MD (2015) Red light-regulated reversible nuclear localization of proteins in mammalian cells and Zebrafish. ACS Synth Biol 4(9):951–958. doi: 10.1021/acssynbio.5b00004CrossRefGoogle Scholar
  18. 18.
    Ye H, Daoud-El Baba M, Peng RW, Fussenegger M (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332(6037):1565–1568. doi: 10.1126/science.1203535CrossRefPubMedGoogle Scholar
  19. 19.
    Folcher M, Oesterle S, Zwicky K, Thekkottil T, Heymoz J, Hohmann M, Christen M, Daoud El-Baba M, Buchmann P, Fussenegger M (2014) Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat Commun 5:5392. doi: 10.1038/ncomms6392CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wend S, Wagner HJ, Müller K, Zurbriggen MD, Weber W, Radziwill G (2014) Optogenetic control of protein kinase activity in mammalian cells. ACS Synth Biol 3(5):280–285. doi: 10.1021/sb400090sCrossRefGoogle Scholar
  21. 21.
    Schlatter S, Rimann M, Kelm J, Fussenegger M (2002) SAMY, a novel mammalian reporter gene derived from Bacillus stearothermophilus Alpha-amylase. Gene 282(1–2):19–31. doi: 10.1074/jbc.273.52.34970CrossRefPubMedGoogle Scholar
  22. 22.
    Kain SR, Ganguly S (2001) Overview of genetic reporter systems. Curr Protoc Mol Biol Chapter 9:Unit9.6. doi: 10.1002/0471142727.mb0906s36CrossRefPubMedGoogle Scholar
  23. 23.
    Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273(52):34970–34975. doi: 10.1074/jbc.273.52.34970CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Maximilian Hörner
    • 1
    • 2
    • 3
  • Konrad Müller
    • 1
    • 3
    • 4
  • Wilfried Weber
    • 1
    • 2
    • 3
    Email author
  1. 1.Faculty of BiologyUniversity of FreiburgFreiburgGermany
  2. 2.Spemann Graduate School of Biology and Medicine (SGBM)University of FreiburgFreiburgGermany
  3. 3.Centre for Biological Signalling Studies (BIOSS)University of FreiburgFreiburgGermany
  4. 4.Novartis Pharma AG, Biologics Technical Development and ManufacturingBaselSwitzerland

Personalised recommendations