Measurement of Epidermal Growth Factor Receptor-Derived Signals Within Plasma Membrane Clathrin Structures

Part of the Methods in Molecular Biology book series (MIMB, volume 1652)


The epidermal growth factor (EGF) receptor (EGFR) is an important regulator of cell growth, proliferation, survival, migration, and metabolism. EGF binding to EGFR triggers the activation of the receptor’s intrinsic kinase activity, in turn eliciting the recruitment of many secondary signaling proteins and activation of downstream signals, such as the activation of phosphatidylinositol-3-kinase (PI3K) and Akt, a process requiring the phosphorylation of Gab1. While the identity of many signals that can be activated by EGFR has been revealed, how the spatiotemporal organization of EGFR signaling within cells controls receptor outcome remains poorly understood. Upon EGF binding at the plasma membrane, EGFR is internalized by clathrin-mediated endocytosis following recruitment to clathrin-coated pits (CCPs). Further, plasma membrane CCPs, but not EGFR internalization, are required for EGF-stimulated Akt phosphorylation. Signaling intermediates such as phosphorylated Gab1, which lead to Akt phosphorylation, are enriched within CCPs upon EGF stimulation. These findings indicate that some plasma membrane CCPs also serve as signaling microdomains required for certain facets of EGFR signaling and are enriched in key EGFR signaling intermediates. Understanding how the spatiotemporal organization of EGFR signals within CCP microdomains controls receptor signaling outcome requires imaging methods that can systematically resolve and analyze the properties of CCPs, EGFR and key signaling intermediates. Here, we describe methods using total internal reflection fluorescence microscopy imaging and analysis to systematically study the enrichment of EGFR and key EGFR-derived signals within CCPs.

Key words

Epidermal growth factor receptor Total internal reflection fluorescence (TIRF) microscopy Clathrin Signaling microdomain Akt Gab1 Spatiotemporal signal organization Image analysis 



This was supported by an Operating Grant from the Canadian Institutes of Health Research (CIHR) to C.N.A (grant no. 125854).


  1. 1.
    Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol 59:S21–S26CrossRefGoogle Scholar
  2. 2.
    Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21:177–184PubMedCrossRefGoogle Scholar
  3. 3.
    Sanchez-Soria P, Camenisch TD (2010) ErbB signaling in cardiac development and disease. Semin Cell Dev Biol 21:929–935PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Schneider MR, Werner S, Paus R, Wolf E (2008) Beyond wavy hairs: the epidermal growth factor receptor and its ligands in skin biology and pathology. Am J Pathol 173:14–24PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Luetteke NC et al (1999) Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126:2739–2750PubMedGoogle Scholar
  6. 6.
    Jura N et al (2009) Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137:1293–1307PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Zhang X, He X, X-Y F, Chang Z (2006) Varp is a Rab21 guanine nucleotide exchange factor and regulates endosome dynamics. J Cell Sci 119:1053–1062PubMedCrossRefGoogle Scholar
  8. 8.
    Alvarado D, Klein DE, Lemmon MA (2010) Structural basis for negative cooperativity in growth factor binding to an EGF receptor. Cell 142:568–579PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1:2005.0010PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mattoon DR, Lamothe B, Lax I, Schlessinger J (2004) The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol 2:24PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ (1996) A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 8:560–564CrossRefGoogle Scholar
  12. 12.
    Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J (2000) A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol 20:1448–1459PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Matheny RW, Adamo ML (2009) Current perspectives on Akt Akt-ivation and Akt-ions. Exp Biol Med 234:1264–1270CrossRefGoogle Scholar
  14. 14.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Miettinen PJ et al (1995) Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 376:337–341PubMedCrossRefGoogle Scholar
  16. 16.
    Sibilia M, Wagner EF (1995) Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 269:234–238PubMedCrossRefGoogle Scholar
  17. 17.
    Threadgill DW et al (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–234PubMedCrossRefGoogle Scholar
  18. 18.
    Sibilia M, Steinbach JP, Stingl L, Aguzzi A, Wagner EF (1998) A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J 17:719–731PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gassmann M et al (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378:390–394PubMedCrossRefGoogle Scholar
  20. 20.
    Golub MS, Germann SL, Lloyd KCK (2004) Behavioral characteristics of a nervous system-specific erbB4 knock-out mouse. Behav Brain Res 153:159–170PubMedCrossRefGoogle Scholar
  21. 21.
    Leu M et al (2003) Erbb2 regulates neuromuscular synapse formation and is essential for muscle spindle development. Development 130:2291–2301PubMedCrossRefGoogle Scholar
  22. 22.
    Bhargava R et al (2005) EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod Pathol 18:1027–1033PubMedCrossRefGoogle Scholar
  23. 23.
    Yewale C, Baradia D, Vhora I, Patil S, Misra A (2013) Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 34:8690–8707PubMedCrossRefGoogle Scholar
  24. 24.
    Tebbutt N, Pedersen MW, Johns TG (2013) Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer 13:663–673PubMedCrossRefGoogle Scholar
  25. 25.
    Ueno NT, Zhang D (2011) Targeting EGFR in triple negative breast cancer. J Cancer 2:324–328PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Normanno N et al (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16PubMedCrossRefGoogle Scholar
  27. 27.
    Sorkin A, Goh LK (2009) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 315:683–696PubMedCrossRefGoogle Scholar
  28. 28.
    Goh LK, Sorkin A (2013) Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol 5:a017459PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sigismund S et al (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15:209–219PubMedCrossRefGoogle Scholar
  30. 30.
    McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533PubMedCrossRefGoogle Scholar
  31. 31.
    Kiyatkin A et al (2006) Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J Biol Chem 281:19925–19938PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kholodenko BN, Hancock JF, Kolch W (2010) Signalling ballet in space and time. Nat Rev Mol Cell Biol 11:414–426PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44PubMedCrossRefGoogle Scholar
  34. 34.
    Schmid EM, McMahon HT (2007) Integrating molecular and network biology to decode endocytosis. Nature 448:883–888PubMedCrossRefGoogle Scholar
  35. 35.
    Schmid EM et al (2006) Role of the AP2 beta-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol 4:e262PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Blondeau F et al (2004) Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci U S A 101:3833–3838PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Borner GHH, Harbour M, Hester S, Lilley KS, Robinson MS (2006) Comparative proteomics of clathrin-coated vesicles. J Cell Biol 175:571–578PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Posor Y et al (2013) Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499:233–237PubMedCrossRefGoogle Scholar
  39. 39.
    Perera RM, Zoncu R, Lucast L, De Camilli P, Toomre D (2006) Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc Natl Acad Sci U S A 103:19332–19337PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Antonescu CN, Aguet F, Danuser G, Schmid SL (2011) Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol Biol Cell 22:2588–2600PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hussain NK et al (1999) Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. J Biol Chem 274:15671–15677PubMedCrossRefGoogle Scholar
  42. 42.
    Mettlen M et al (2009) Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits. Mol Biol Cell 20:3251–3260PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mettlen M, Loerke D, Yarar D, Danuser G, Schmid SL (2010) Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J Cell Biol 188:919–933PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Loerke D, Mettlen M, Schmid SL, Danuser G (2011) Measuring the hierarchy of molecular events during clathrin-mediated endocytosis. Traffic 12:815–825PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Loerke D et al (2009) Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol 7:e57PubMedCrossRefGoogle Scholar
  46. 46.
    Nunez D et al (2011) Hotspots organize clathrin-mediated endocytosis by efficient recruitment and retention of nucleating resources. Traffic 12:1868–1878PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Jaqaman K et al (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Liu AP, Loerke D, Schmid SL, Danuser G (2009) Global and local regulation of clathrin-coated pit dynamics detected on patterned substrates. Biophys J 97:1038–1047PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Reis CR et al (2015) Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J 13:2132–2146CrossRefGoogle Scholar
  50. 50.
    Cocucci E, Aguet F, Boulant S, Kirchhausen T (2012) The first five seconds in the life of a clathrin-coated pit. Cell 150:495–507PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Aguet F, Antonescu CN, Mettlen M, Schmid SL, Danuser G (2013) Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev Cell 26:279–291PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ehrlich M et al (2004) Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118:591–605PubMedCrossRefGoogle Scholar
  53. 53.
    Antonescu CN, Danuser G, Schmid SL (2010) Phosphatidic acid plays a regulatory role in clathrin-mediated endocytosis. Mol Biol Cell 21:2944–2952PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Taylor MJ, Perrais D, Merrifield CJ (2011) A high precision survey of the molecular dynamics of Mammalian clathrin-mediated endocytosis. PLoS Biol 9:e1000604PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Puthenveedu MA, von Zastrow M (2006) Cargo regulates clathrin-coated pit dynamics. Cell 127:113–124PubMedCrossRefGoogle Scholar
  56. 56.
    Tosoni D et al (2005) TTP specifically regulates the internalization of the transferrin receptor. Cell 123:875–888PubMedCrossRefGoogle Scholar
  57. 57.
    Motley A, Bright NA, Seaman MNJ, Robinson MS (2003) Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol 162:909–918PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Conner SD, Schroter T, Schmid SL (2003) AAK1-mediated micro2 phosphorylation is stimulated by assembled clathrin. Traffic 4:885–890PubMedCrossRefGoogle Scholar
  59. 59.
    Wilde A et al (1999) EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96:677–687PubMedCrossRefGoogle Scholar
  60. 60.
    Eisenberg E, Greene LE (2007) Multiple roles of auxilin and Hsc70 in clathrin-mediated endocytosis. Traffic 8:640–646PubMedCrossRefGoogle Scholar
  61. 61.
    Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089PubMedCrossRefGoogle Scholar
  62. 62.
    Cohen S, Fava RA (1985) Internalization of functional epidermal growth factor: receptor/kinase complexes in A-431 cells. J Biol Chem 260:12351–12358PubMedGoogle Scholar
  63. 63.
    Wada I, Lai WH, Posner BI, Bergeron JJ (1992) Association of the tyrosine phosphorylated epidermal growth factor receptor with a 55-kD tyrosine phosphorylated protein at the cell surface and in endosomes. J Cell Biol 116:321–330PubMedCrossRefGoogle Scholar
  64. 64.
    Di Guglielmo GM, Baass PC, WJ O, Posner BI, Bergeron JJ (1994) Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J 13:4269–4277PubMedPubMedCentralGoogle Scholar
  65. 65.
    Wang Z, Tung PS, Moran MF (1996) Association of p120 ras GAP with endocytic components and colocalization with epidermal growth factor (EGF) receptor in response to EGF stimulation. Cell Growth Differ 7:123–133PubMedGoogle Scholar
  66. 66.
    Haugh JM, Huang AC, Wiley HS, Wells A, Lauffenburger DA (1999) Internalized epidermal growth factor receptors participate in the activation of p21(ras) in fibroblasts. J Biol Chem 274:34350–34360PubMedCrossRefGoogle Scholar
  67. 67.
    Burke P, Schooler K, Wiley HS (2001) Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell 12:1897–1910PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wang Y, Pennock S, Chen X, Wang Z (2002) Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 22:7279–7290PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sousa LP et al (2012) Suppression of EGFR endocytosis by dynamin depletion reveals that EGFR signaling occurs primarily at the plasma membrane. Proc Natl Acad Sci U S A 109:4419–4424PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Garay C et al (2015) Epidermal growth factor-stimulated Akt phosphorylation requires clathrin or ErbB2 but not receptor endocytosis. Mol Biol Cell 26(19):3504PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lucarelli S, Pandey R, Judge G, Antonescu CN (2016) Similar requirement for clathrin in EGF- and HGF- stimulated Akt phosphorylation. Commun Integr Biol 9:e1175696PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Delos Santos RC, Garay C, Antonescu CN (2015) Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling. Cell Signal 27:1963–1976PubMedCrossRefGoogle Scholar
  73. 73.
    Grove J et al (2014) Flat clathrin lattices: stable features of the plasma membrane. Mol Biol Cell 25:3581–3594PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Elenko E et al (2003) Spatial regulation of Gαi protein signaling in clathrin-coated membrane microdomains containing GAIP. Mol Pharmacol 64:11–20PubMedCrossRefGoogle Scholar
  75. 75.
    Eichel K, Jullié D, von Zastrow M (2016) β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat Cell Biol 18:303–310PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ibach J et al (2015) Single particle tracking reveals that EGFR signaling activity is amplified in clathrin-coated pits. PLoS One 10:e0143162PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Torreno-Pina JA et al (2014) Enhanced receptor-clathrin interactions induced by N-glycan-mediated membrane micropatterning. Proc Natl Acad Sci U S A 111:11037–11042PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39PubMedCrossRefGoogle Scholar
  79. 79.
    Anchisi L, Dessì S, Pani A, Mandas A (2013) Cholesterol homeostasis: a key to prevent or slow down neurodegeneration. Front Physiol 3:1–12CrossRefGoogle Scholar
  80. 80.
    Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50(Suppl):S323–S328PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mukherjee S, Maxfield FR (2004) Membrane domains. Annu Rev Cell Dev Biol 20:839–866PubMedCrossRefGoogle Scholar
  82. 82.
    Sonnino S, Prinetti A (2013) Membrane domains and the “lipid raft” concept. Curr Med Chem 20:4–21PubMedGoogle Scholar
  83. 83.
    Cambi A, Lidke DS (2014) Cell membrane and nanodomains: from biochemistry to nanoscopy, 1st edn. CRC Press, Boca Raton, FLGoogle Scholar
  84. 84.
    Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598PubMedCrossRefGoogle Scholar
  85. 85.
    Ringerike T, Blystad FD, Levy FO, Madshus IH, Stang E (2002) Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J Cell Sci 115:1331–1340PubMedGoogle Scholar
  86. 86.
    Puri C et al (2005) Relationships between EGFR signaling-competent and endocytosis-competent membrane microdomains. Mol Biol Cell 16:2704–2718PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Rappoport JZ, Simon SM (2009) Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots. J Cell Sci 122:1301–1305PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kazazic M et al (2006) EGF-induced activation of the EGF receptor does not trigger mobilization of caveolae. Traffic 7:1518–1527PubMedCrossRefGoogle Scholar
  89. 89.
    Roepstorff K, Thomsen P, Sandvig K, Van Deurs B (2002) Sequestration of epidermal growth factor receptors in non-caveolar lipid rafts inhibits ligand binding. J Biol Chem 277:18954–18960PubMedCrossRefGoogle Scholar
  90. 90.
    Hofman EG et al (2008) EGF induces coalescence of different lipid rafts. J Cell Sci 121:2519–2528PubMedCrossRefGoogle Scholar
  91. 91.
    Lin CY, Huang JY, Lo L-W (2015) Unraveling the impact of lipid domains on the dimerization processes of single-molecule EGFRs of live cells. Biochim Biophys Acta Biomembr 1848:886–893CrossRefGoogle Scholar
  92. 92.
    Mineo C, Gill GN, Richard G, Anderson W, Anderson RGW (1999) Regulated migration of epidermal growth factor receptor from caveolae. J Biol Chem 274:30636–30643PubMedCrossRefGoogle Scholar
  93. 93.
    Irwin ME, Mueller KL, Bohin N, Ge Y, Boerner JL (2011) Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J Cell Physiol 226:2316–2328PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hea YO et al (2007) Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. Prostate 67:1061–1069CrossRefGoogle Scholar
  95. 95.
    Li YC, Park MJ, Ye S-K, Kim C-W, Kim Y-N (2006) Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol 168:1107–1118PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Yáñez-Mó M, Barreiro O, Gordon-Alonso M, Sala-Valdés M, Sánchez-Madrid F (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19:434–446PubMedCrossRefGoogle Scholar
  97. 97.
    Danglot L et al (2010) Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. J Cell Sci 123:723–735PubMedCrossRefGoogle Scholar
  98. 98.
    Liu AP, Aguet F, Danuser G, Schmid SL (2010) Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J Cell Biol 191:1381–1393PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ting AY, Kain KH, Klemke RL, Tsien RY (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci U S A 98:15003–15008PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wang Y et al (2005) Visualizing the mechanical activation of Src. Nature 434:1040–1045PubMedCrossRefGoogle Scholar
  101. 101.
    Tsou P, Zheng B, Hsu C-H, Sasaki AT, Cantley LC (2011) A fluorescent reporter of AMPK activity and cellular energy stress. Cell Metab 13:476–486PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Fekri F, Delos Santos R, Karshafian R, Antonescu C (2016) Ultrasound microbubble treatment enhances clathrin-mediated endocytosis and fluid-phase uptake through distinct mechanisms. PLoS One 11:e0156754PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bone LN et al (2017) The acyltransferase LYCAT controls specific phosphoinositides and related membrane traffic. Mol Biol Cell 28(1):161–172PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Crupi MJ et al (2015) Distinct temporal regulation of RET isoform internalization: roles of clathrin and AP2. Traffic 16:1155–1173PubMedCrossRefGoogle Scholar
  105. 105.
    Pinilla-Macua I, Watkins SC, Sorkin A (2016) Endocytosis separates EGF receptors from endogenous fluorescently labeled HRas and diminishes receptor signaling to MAP kinases in endosomes. Proc Natl Acad Sci U S A 113:2122–2127PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Nakatsu F et al (2010) The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics. J Cell Biol 190:307–315PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Goh LK, Huang F, Kim W, Gygi S, Sorkin A (2010) Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J Cell Biol 189:871–883PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wang Q et al (2005) Control of epidermal growth factor receptor endocytosis by receptor dimerization, rather than receptor kinase activation. EMBO Rep 6:942–948PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wang Q, Chen X, Wang Z (2015) Dimerization drives EGFR endocytosis through two sets of compatible endocytic codes. J Cell Sci 128:935–950PubMedCrossRefGoogle Scholar
  110. 110.
    Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123:3621–3628PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774PubMedCrossRefGoogle Scholar
  112. 112.
    Teckchandani A, Mulkearns EE, Randolph TW, Toida N, Cooper JA (2012) The clathrin adaptor Dab2 recruits EH domain scaffold proteins to regulate integrin β1 endocytosis. Mol Biol Cell 23:2905–2916PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Preparation of slides and coverslips for microscopy. CSH Protoc 2008:pdb.prot4988PubMedGoogle Scholar
  114. 114.
    Cold Spring Harbor Protocols (2010) Valap for agar mounts. Cold Spring Harb Protoc 2010:pdb.rec12380–pdb.rec12380Google Scholar
  115. 115.
    Blank GS, Brodsky FM (1986) Site-specific disruption of clathrin assembly produces novel structures. EMBO J 5:2087–2095PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Chemistry and BiologyRyerson UniversityTorontoCanada
  2. 2.Graduate Program in Molecular ScienceRyerson UniversityTorontoCanada
  3. 3.Keenan Research Centre for Biomedical Science of St. Michael’s HospitalTorontoCanada

Personalised recommendations