Skip to main content

Genomic and Transcriptomic Analyses of Avian Sex Chromosomes and Sex-Linked Genes

  • Protocol
  • First Online:
Book cover Avian and Reptilian Developmental Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1650))

Abstract

Sex chromosomes and sex-linked genes usually show unusual features comparing to the rest of the genome and thus are of particular interests to evolutionary and developmental biologists. Here we describe recently developed bioinformatic methods for identifying sex-linked sequences, in a genome without priori linkage information. Some are developed during our course of studying avian genomes. These methods require sequence data, either assembled draft genome or raw sequences derived from the heterogametic sex (e.g., a female bird or a male mammal). Their application is not restricted to birds but can be used for any species with a sex chromosome pair that has diverged from each other for a substantial degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charlesworth B, Coyne JA, Barton NH (1987) The relative rates of evolution of sex chromosomes and autosomes. Am Nat 130:113–146

    Article  Google Scholar 

  2. Meisel RP, Malone JH, Clark AG (2012) Faster-X evolution of gene expression in Drosophila. PLoS Genet 8:e1003013. doi:10.1371/journal.pgen.1003013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kharchenko PV, Xi R, Park PJ (2011) Evidence for dosage compensation between the X chromosome and autosomes in mammals. Nat Genet 43:1167–1169. doi:10.1038/ng.991

    Article  CAS  PubMed  Google Scholar 

  4. Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho T-J, Koutseva N, Zaghlul S, Graves T, Rock S, Kremitzki C, Fulton RS, Dugan S, Ding Y, Morton D, Khan Z, Lewis L, Buhay C, Wang Q, Watt J, Holder M, Lee S, Nazareth L, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC (2014) Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508:494–499. doi:10.1038/nature13206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huynh KD, Lee JT (2003) Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426:857–862. doi:10.1038/nature02222

    Article  CAS  PubMed  Google Scholar 

  6. Julien P, Brawand D, Soumillon M, Necsulea A, Liechti A, Schutz F, Daish T, Grutzner F, Kaessmann H (2012) Mechanisms and evolutionary patterns of mammalian and avian dosage compensation. PLoS Biol 10(5):e1001328. doi:10.1371/journal.pbio.1001328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, Gilbert MTP, Zhang G (2014) Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346:1246338. doi:10.1126/science.1246338

    Article  PubMed  Google Scholar 

  8. Carvalho A, Clark A (2013) Efficient identification of Y chromosome sequences in the human and Drosophila genomes. Genome Res 23:1894–1907. doi:10.1101/gr.156034.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13:329–342. doi:10.1038/nrg3174

    Article  CAS  PubMed  Google Scholar 

  10. Parsch J, Ellegren H (2013) The evolutionary causes and consequences of sex-biased gene expression. Nat Rev Genet 14:83–87. doi:10.1038/nrg3376

    Article  CAS  PubMed  Google Scholar 

  11. Ellegren H, Hultin-Rosenberg L, Brunström B, Dencker L, Kultima K, Scholz B (2007) Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol 5:40. doi:10.1186/1741-7007-5-40

    Article  PubMed  PubMed Central  Google Scholar 

  12. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. doi:10.1038/nprot.2012.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667. doi:10.1038/nprot.2016.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527. doi:10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  15. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. doi:10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, Zhou X, Lam TW, Li Y, Xu X, Wong GKS, Wang J (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30:1660–1666. doi:10.1093/bioinformatics/btu077

    Article  CAS  PubMed  Google Scholar 

  17. Andrews S (2010) FastQC—a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 25 Aug 2013

  18. Chen N, Bellott DW, Page DC, Clark AG (2012) Identification of avian W-linked contigs by short-read sequencing. BMC Genomics 13:183. doi:10.1186/1471-2164-13-183

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:10. doi:10.14806/ej.17.1.200

    Google Scholar 

  20. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967. doi:10.1093/bioinformatics/btp336

    Article  CAS  PubMed  Google Scholar 

  21. Smit A, Hubley R, Green P (2016) RepeatMasker Open-4.0. http://www.repeatmasker.org/ (2013–2015)

  22. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. She R, Chu JS, Uyar B, Wang J, Wang K, Chen N (2011) genBlastG: using BLAST searches to build homologous gene models. Bioinformatics 27(15):2141–2143. doi:10.1093/bioinformatics/btr342

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England) 25:2078–2079. doi:10.1093/bioinformatics/btp352

    Article  Google Scholar 

  25. Wysoker A, Tibbetts K, Fennell T (2013) Picard-Tools 1.9.2. http://picard.sourceforge.net/. Accessed 28 May 2013

  26. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770. doi:10.1093/bioinformatics/btr011

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bellott DW, Skaletsky H, Pyntikova T, Mardis ER, Graves T, Kremitzki C, Brown LG, Rozen S, Warren WC, Wilson RK, Page DC (2010) Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature 466:612–616. doi:10.1038/nature09172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang X, Chen X-G, Armbruster PA (2016) Comparative performance of transcriptome assembly methods for non-model organisms. BMC Genomics 17:523. doi:10.1186/s12864-016-2923-8

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li B, Fillmore N, Bai Y, Collins M, Thomson JA, Stewart R, Dewey C (2014) Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol. doi:10.1101/006338

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zhang, J., Li, J., Zhou, Q. (2017). Genomic and Transcriptomic Analyses of Avian Sex Chromosomes and Sex-Linked Genes. In: Sheng, G. (eds) Avian and Reptilian Developmental Biology. Methods in Molecular Biology, vol 1650. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7216-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7216-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7215-9

  • Online ISBN: 978-1-4939-7216-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics