Skip to main content

Live Imaging of Nuclear RNPs in Mammalian Complex Tissue with ECHO-liveFISH

  • Protocol
RNA Detection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1649))

  • 5698 Accesses

Abstract

Multiplex RNA detection with fluorescence microscopy offers high spatial and temporal resolution required for addressing complex behaviors of RNA in living cells. Using chemically engineered linear oligonucleotide probes that emit fluorescence upon hybridization to target RNA, we have devised an imaging method suitable for studies of the dynamic regulation of nuclear RNPs, an important and yet poorly understood cellular pathway of gene expression. This new method labels specific sequences of RNA components in RNPs and thus avoids overexpression of fluorescent marker proteins that may result in entangled experimental results. Using this method, we observe in living brain tissue spatially constrained nuclear RNA foci under dynamic regulation in response to cellular transcriptional activity with individual cell heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fong KW, Li Y, Wang W, Ma W, Li K, Qi RZ, Liu D, Songyang Z, Chen J (2013) Whole-genome screening identifies proteins localized to distinct nuclear bodies. J Cell Biol 203(1):149–164. doi:10.1083/jcb.201303145. jcb.201303145 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sutherland HG, Mumford GK, Newton K, Ford LV, Farrall R, Dellaire G, Caceres JF, Bickmore WA (2001) Large-scale identification of mammalian proteins localized to nuclear sub-compartments. Hum Mol Genet 10(18):1995–2011

    Article  CAS  Google Scholar 

  3. Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128(4):787–800. doi:10.1016/j.cell.2007.01.028. S0092-8674(07)00126-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Sleeman JE, Trinkle-Mulcahy L (2014) Nuclear bodies: new insights into assembly/dynamics and disease relevance. Curr Opin Cell Biol 28:76–83. doi:10.1016/j.ceb.2014.03.004. S0955-0674(14)00029-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Mankodi A, Lin X, Blaxall BC, Swanson MS, Thornton CA (2005) Nuclear RNA foci in the heart in myotonic dystrophy. Circ Res 97(11):1152–1155. doi:10.1161/01.RES.0000193598.89753.e3. 01.RES.0000193598.89753.e3 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Lee YB, Chen HJ, Peres JN, Gomez-Deza J, Attig J, Stalekar M, Troakes C, Nishimura AL, Scotter EL, Vance C, Adachi Y, Sardone V, Miller JW, Smith BN, Gallo JM, Ule J, Hirth F, Rogelj B, Houart C, Shaw CE (2013) Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 5(5):1178–1186. doi:10.1016/j.celrep.2013.10.049. S2211-1247(13)00648-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mao YS, Sunwoo H, Zhang B, Spector DL (2011) Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 13(1):95–101. doi:10.1038/ncb2140. ncb2140 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Quinodoz S, Guttman M (2014) Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol 24(11):651–663. doi:10.1016/j.tcb.2014.08.009. S0962-8924(14)00146-9 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chaumeil J, Le Baccon P, Wutz A, Heard E (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20(16):2223–2237. doi:10.1101/gad.380906. 20/16/2223 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR, Morse M, Engreitz J, Lander ES, Guttman M, Lodish HF, Flavell R, Raj A, Rinn JL (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21(2):198–206. doi:10.1038/nsmb.2764. nsmb.2764 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308. doi:10.1038/nbt0396-303

    Article  CAS  PubMed  Google Scholar 

  12. Biggins JB, Prudent JR, Marshall DJ, Ruppen M, Thorson JS (2000) A continuous assay for DNA cleavage: the application of "break lights" to enediynes, iron-dependent agents, and nucleases. Proc Natl Acad Sci U S A 97(25):13537–13542. doi:10.1073/pnas.240460997. 240460997 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Whitcombe D, Theaker J, Guy SP, Brown T, Little S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17(8):804–807. doi:10.1038/11751

    Article  CAS  PubMed  Google Scholar 

  14. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88(16):7276–7280

    Article  CAS  Google Scholar 

  15. Prigodich AE, Randeria PS, Briley WE, Kim NJ, Daniel WL, Giljohann DA, Mirkin CA (2012) Multiplexed nanoflares: mRNA detection in live cells. Anal Chem 84(4):2062–2066. doi:10.1021/ac202648w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hovelmann F, Gaspar I, Ephrussi A, Seitz O (2013) Brightness enhanced DNA FIT-probes for wash-free RNA imaging in tissue. J Am Chem Soc 135(50):19025–19032. doi:10.1021/ja410674h

    Article  CAS  PubMed  Google Scholar 

  17. Sato S, Watanabe M, Katsuda Y, Murata A, Wang DO, Uesugi M (2015) Live-cell imaging of endogenous mRNAs with a small molecule. Angew Chem Int Ed Engl 54(6):1855–1858. doi:10.1002/anie.201410339

    Article  CAS  PubMed  Google Scholar 

  18. Asanuma H, Akahane M, Niwa R, Kashida H, Kamiya Y (2015) Highly sensitive and robust linear probe for detection of mRNA in cells. Angew Chem Int Ed Engl 54(14):4315–4319. doi:10.1002/anie.201411000

    Article  CAS  PubMed  Google Scholar 

  19. Wang DO, Matsuno H, Ikeda S, Nakamura A, Yanagisawa H, Hayashi Y, Okamoto A (2012) A quick and simple FISH protocol with hybridization-sensitive fluorescent linear oligodeoxynucleotide probes. RNA 18(1):166–175. doi:10.1261/rna.028431.111. rna.028431.111 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang DO, Okamoto A (2012) ECHO probes: Fluorescence emission control for nucleic acid imaging. J Photoch Photobio C 13(2):112–123. doi:10.1016/j.jphotochemrev.2012.03.001

    Article  CAS  Google Scholar 

  21. Ikeda S, Kubota T, Kino K, Okamoto A (2008) Sequence dependence of fluorescence emission and quenching of doubly thiazole orange labeled DNA: effective design of a hybridization-sensitive probe. Bioconjug Chem 19(8):1719–1725. doi:10.1021/bc800201m

    Article  CAS  PubMed  Google Scholar 

  22. Ikeda S, Kubota T, Yanagisawa H, Yuki M, Okamoto A (2009) Synthesis of exciton-controlled fluorescent probes for RNA imaging. Nucleic Acids Symp Ser (Oxf) 53:155–156. doi:10.1093/nass/nrp078. nrp078 [pii]

    Article  CAS  Google Scholar 

  23. Ikeda S, Okamoto A (2008) Hybridization-sensitive on-off DNA probe: application of the exciton coupling effect to effective fluorescence quenching. Chem Asian J 3(6):958–968. doi:10.1002/asia.200800014

    Article  CAS  PubMed  Google Scholar 

  24. Oomoto I, Suzuki-Hirano A, Umeshima H, Han YW, Yanagisawa H, Carlton P, Harada Y, Kengaku M, Okamoto A, Shimogori T, Wang DO (2015) ECHO-liveFISH: in vivo RNA labeling reveals dynamic regulation of nuclear RNA foci in living tissues. Nucleic Acids Res 43(19):e126. doi:10.1093/nar/gkv614. gkv614 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohmachi M, Fujiwara Y, Muramatsu S, Yamada K, Iwata O, Suzuki K, Wang DO (2016) A modified single-cell electroporation method for molecule delivery into a motile protist, Euglena gracilis. J Microbiol Methods 130:106–111. doi:10.1016/j.mimet.2016.08.018. S0167-7012(16)30228-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Hayashi G, Yanase M, Takeda K, Sakakibara D, Sakamoto R, Wang DO, Okamoto A (2015) Hybridization-sensitive fluorescent oligonucleotide probe conjugated with a bulky module for compartment-specific mRNA monitoring in a living cell. Bioconjug Chem 26(3):412–417. doi:10.1021/acs.bioconjchem.5b00090

    Article  CAS  PubMed  Google Scholar 

  27. Schins JM, Agronskaia A, de Grooth BG, Greve J (1999) Orientation of the chromophore dipoles in the TOTO-DNA system. Cytometry 37(3):230–237. doi:10.1002/(SICI)1097-0320(19991101)37:3<230::AID-CYTO10>3.0.CO;2-# [pii]

    Article  CAS  Google Scholar 

  28. Kasha M (1963) Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiat Res 20:55–70

    Article  CAS  Google Scholar 

  29. Nygren J, Svanvik N, Kubista M (1998) The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers 46(1):39–51. doi:10.1002/(SICI)1097-0282(199807)46:1<39::AID-BIP4>3.0.CO;2-Z [pii]

    Article  CAS  Google Scholar 

  30. Wang DO, Okamoto A (2015) Visualization of nucleic acids with synthetic exciton-controlled fluorescent oligonucleotide probes. Methods Mol Biol 1262:69–87. doi:10.1007/978-1-4939-2253-6_5

    Article  CAS  PubMed  Google Scholar 

  31. Wang DO, Okamoto A (2015) ECHO-FISH for gene transcript detection in neuronal and other cells and subcellular compartments. In: Hauptmann G (ed) In Situ Hybridization Methods. NeuroMethods 99:559–584. doi:10.1007/978-1-4939-2303-8_30

    Article  CAS  Google Scholar 

  32. Umeshima H, Hirano T, Kengaku M (2007) Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci U S A 104(41):16182–16187. doi:10.1073/pnas.0708047104. 0708047104 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jacob MD, Audas TE, Uniacke J, Trinkle-Mulcahy L, Lee S (2013) Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus. Mol Biol Cell 24(18):2943–2953. doi:10.1091/mbc.E13-04-0223. mbc.E13-04-0223 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burger K, Muhl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, Kellner M, Gruber-Eber A, Kremmer E, Holzel M, Eick D (2010) Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 285(16):12416–12425. doi:10.1074/jbc.M109.074211. M109.074211 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmidt EK, Clavarino G, Ceppi M, Pierre P (2009) SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods 6(4):275–277. doi:10.1038/nmeth.1314. nmeth.1314 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Ohtan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, D.O. (2018). Live Imaging of Nuclear RNPs in Mammalian Complex Tissue with ECHO-liveFISH. In: Gaspar, I. (eds) RNA Detection. Methods in Molecular Biology, vol 1649. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7213-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7213-5_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7212-8

  • Online ISBN: 978-1-4939-7213-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics