Advertisement

Target Identification Using Cell Permeable and Cleavable Chloroalkane Derivatized Small Molecules

  • Jacqui L. Mendez-Johnson
  • Danette L. Daniels
  • Marjeta Urh
  • Rachel Friedman Ohana
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1647)

Abstract

An important aspect for gaining functional insight into the activity of small molecules revealed through phenotypic screening is the identification of their interacting proteins. Yet, isolating and validating these interacting proteins remains difficult. Here, we present a new approach utilizing a chloroalkane (CA) moiety capture handle, which can be chemically attached to small molecules to isolate their respective protein targets. Derivatization of small molecules with the CA moiety has been shown to not significantly impact their cell permeability or potency, allowing for phenotypic validation of the derivatized small molecule prior to capture. The retention of cell permeability also allows for treatment of live cells with the derivatized small molecule and the CA moiety enables rapid covalent capture onto HaloTag coated magnetic beads. Additionally, several options are available for the elution of interacting proteins, including chemical cleavage of the CA moiety, competitive elution using excess unmodified small molecule, or sodium dodecyl sulfate (SDS) elution. These features taken together yield a highly robust and efficient process for target identification, including capture of weak or low abundance interactors.

Key words

Target identification Chemoproteomics Phenotypic screening Small molecule Derivatized small molecule Chloroalkane HaloTag Chemical cleavage Palladium catalyst Mass spectrometry 

References

  1. 1.
    Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519CrossRefPubMedGoogle Scholar
  2. 2.
    Moellering RE, Cravatt BF (2012) How chemoproteomics can enable drug discovery and development. Chem Biol 19:11–22CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414CrossRefPubMedGoogle Scholar
  4. 4.
    Fischer JJ, Michaelis S, Schrey AK et al (2010) Capture small molecule mass spectrometry sheds light on the molecular mechanisms of liver toxicity of two Parkinson drugs. Toxicol Sci 113:243CrossRefPubMedGoogle Scholar
  5. 5.
    Bantscheff M, Eberhard D, Abraham Y et al (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25:1035–1044CrossRefPubMedGoogle Scholar
  6. 6.
    Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33:R311–R323CrossRefGoogle Scholar
  7. 7.
    Flory MR, Griffin RJ, Martin D, Aebersold R (2002) Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol 20:S23–S29CrossRefPubMedGoogle Scholar
  8. 8.
    Sato S, Murata A, Shirakawa T, Uesugi M (2010) Biochemical target isolation for novices: affinity-based strategies. Chem Biol 17:616−623CrossRefGoogle Scholar
  9. 9.
    Salisbury CM, Cravatt BF (2008) Optimization of activity-based probes for proteomic profiling of histone deacetylase complexes. J Am Chem Soc 130:2184−2194CrossRefGoogle Scholar
  10. 10.
    Su Y, Ge J, Zhu B et al (2013) Target identification of biologically active small molecules via in situ methods. Curr Opin Chem Biol 17:768−775CrossRefGoogle Scholar
  11. 11.
    Salisbury CM, Cravatt BF (2007) Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc Natl Acad Sci U S A 104:1171–1176CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ohana RF, Kirkland TA, Woodroofe CC et al (2015) Deciphering the cellular targets of bioactive small molecules using a chloroalkane capture tag. ACS Chem Biol 10:2316–2324CrossRefPubMedGoogle Scholar
  13. 13.
    Ohana RF, Levin S, Wood MG et al (2016) Improved deconvolution of protein targets for bioactive small molecules using a palladium cleavable chloroalkane capture tag. ACS Chem Biol 11(9):2608–2617. SubmittedCrossRefGoogle Scholar
  14. 14.
    Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382CrossRefPubMedGoogle Scholar
  15. 15.
    Urh M, Rosenberg M (2012) HaloTag, a platform technology for protein analysis. Curr Chem Genomics 6:72–78CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Encell LP, Ohana FR, Zimmerman K et al (2012) Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands. Curr Chem Genomics 6:55–71CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Trost BM, Lee C (2000) Asymmetric allylic alkylation reaction in catalytic asymmetric synthesis, 2nd edn. Wiley-VCH, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Jacqui L. Mendez-Johnson
    • 1
  • Danette L. Daniels
    • 1
  • Marjeta Urh
    • 1
  • Rachel Friedman Ohana
    • 1
  1. 1.Promega CorporationMadisonUSA

Personalised recommendations