Skip to main content

Monitoring Dynamic Changes of the Cell Surface Glycoproteome by Quantitative Proteomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1647))

Abstract

The analysis of the cell surface accessible proteome provides invaluable information about cellular identity, cellular functions, and interactions. Cell surface labeling in combination with quantitative proteomics enables the unbiased identification and quantification of cell surface proteins. We describe a fast, efficient, and robust protocol for the enrichment of the N-linked plasma membrane glycoproteome and subsequent analysis by mass spectrometry. Precise and multiplexed quantification of relative changes of cell surface protein presentation is enabled by an isobaric labeling strategy.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Klabunde T, Hessler G (2002) Drug design strategies for targeting G-protein-coupled receptors. Chembiochem 3:928–944

    Article  CAS  PubMed  Google Scholar 

  2. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  3. Lindsley CW (2015) 2014 global prescription medication statistics: strong growth and CNS well represented. ACS Chem Neurosci 6:505–506

    Article  CAS  PubMed  Google Scholar 

  4. Shin BK, Wang H, Yim AM et al (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    Article  CAS  PubMed  Google Scholar 

  5. Pshezhetsky AV, Fedjaev M, Ashmarina L et al (2007) Subcellular proteomics of cell differentiation: quantitative analysis of the plasma membrane proteome of Caco-2 cells. Proteomics 7:2201–2215

    Article  CAS  PubMed  Google Scholar 

  6. Leonard RT, Vanderwoude WJ (1976) Isolation of plasma membranes from corn roots by sucrose density gradient centrifugation: an anomalous effect of ficoll. Plant Physiol 57:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356:276–287

    Article  CAS  PubMed  Google Scholar 

  8. Karhemo PR, Ravela S, Laakso M et al (2012) An optimized isolation of biotinylated cell surface proteins reveals novel players in cancer metastasis. J Proteome 77:87–100

    Article  CAS  Google Scholar 

  9. Nunomura K, Nagano K, Itagaki C et al (2005) Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics 4:1968–1976

    Article  CAS  PubMed  Google Scholar 

  10. Wollscheid B, Bausch-Fluck D, Henderson C et al (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27:378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bausch-Fluck D, Hofmann A, Bock T et al (2015) A mass spectrometric-derived cell surface protein atlas. PLoS One 10:e0121314

    Article  PubMed  PubMed Central  Google Scholar 

  12. Werner T, Sweetman G, Savitski MF et al (2014) Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal Chem 86:3594–3601

    Article  CAS  PubMed  Google Scholar 

  13. Oda Y, Huang K, Cross FR et al (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96:6591–6596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  15. Savitski MM, Sweetman G, Askenazi M et al (2011) Delayed fragmentation and optimized isolation width settings for improvement of protein identification and accuracy of isobaric mass tag quantification on Orbitrap-type mass spectrometers. Anal Chem 83:8959–8967

    Article  CAS  PubMed  Google Scholar 

  16. Savitski MM, Mathieson T, Zinn N et al (2013) Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J Proteome Res 12:3586–3598

    Article  CAS  PubMed  Google Scholar 

  17. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  18. Franken H, Mathieson T, Childs D et al (2015) Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat Protoc 10:1567–1593

    Article  CAS  PubMed  Google Scholar 

  19. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  CAS  PubMed  Google Scholar 

  20. Silva JC, Gorenstein MV, Li GZ et al (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5:144–156

    Article  CAS  PubMed  Google Scholar 

  21. Becher I, Savitski MM, Savitski MF et al (2013) Affinity profiling of the cellular kinome for the nucleotide cofactors ATP, ADP, and GTP. ACS Chem Biol 8:599–607

    Article  CAS  PubMed  Google Scholar 

  22. Cox J, Hein MY, Luber CA et al (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clamp JR, Hough L (1966) Some observations on the periodate oxidation of amino compounds. Biochem J 101:120–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rauniyar N, Yates JR III (2014) Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res 13:5293–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McAlister GC, Nusinow DP, Jedrychowski MP et al (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86:7150–7158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all our colleagues at Cellzome for support and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Bantscheff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kalxdorf, M., Eberl, H.C., Bantscheff, M. (2017). Monitoring Dynamic Changes of the Cell Surface Glycoproteome by Quantitative Proteomics. In: Lazar, I., Kontoyianni, M., Lazar, A. (eds) Proteomics for Drug Discovery. Methods in Molecular Biology, vol 1647. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7201-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7201-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7200-5

  • Online ISBN: 978-1-4939-7201-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics