Advertisement

Monitoring Dynamic Changes of the Cell Surface Glycoproteome by Quantitative Proteomics

  • Mathias Kalxdorf
  • Hans Christian Eberl
  • Marcus Bantscheff
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1647)

Abstract

The analysis of the cell surface accessible proteome provides invaluable information about cellular identity, cellular functions, and interactions. Cell surface labeling in combination with quantitative proteomics enables the unbiased identification and quantification of cell surface proteins. We describe a fast, efficient, and robust protocol for the enrichment of the N-linked plasma membrane glycoproteome and subsequent analysis by mass spectrometry. Precise and multiplexed quantification of relative changes of cell surface protein presentation is enabled by an isobaric labeling strategy.

Key words

N-Glycoproteomics Isobaric mass tags Mass spectrometry Plasma membrane proteome dynamics Biotinylation 

Notes

Acknowledgments

We would like to thank all our colleagues at Cellzome for support and fruitful discussions.

References

  1. 1.
    Klabunde T, Hessler G (2002) Drug design strategies for targeting G-protein-coupled receptors. Chembiochem 3:928–944CrossRefPubMedGoogle Scholar
  2. 2.
    Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996CrossRefPubMedGoogle Scholar
  3. 3.
    Lindsley CW (2015) 2014 global prescription medication statistics: strong growth and CNS well represented. ACS Chem Neurosci 6:505–506CrossRefPubMedGoogle Scholar
  4. 4.
    Shin BK, Wang H, Yim AM et al (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616CrossRefPubMedGoogle Scholar
  5. 5.
    Pshezhetsky AV, Fedjaev M, Ashmarina L et al (2007) Subcellular proteomics of cell differentiation: quantitative analysis of the plasma membrane proteome of Caco-2 cells. Proteomics 7:2201–2215CrossRefPubMedGoogle Scholar
  6. 6.
    Leonard RT, Vanderwoude WJ (1976) Isolation of plasma membranes from corn roots by sucrose density gradient centrifugation: an anomalous effect of ficoll. Plant Physiol 57:105–114CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356:276–287CrossRefPubMedGoogle Scholar
  8. 8.
    Karhemo PR, Ravela S, Laakso M et al (2012) An optimized isolation of biotinylated cell surface proteins reveals novel players in cancer metastasis. J Proteome 77:87–100CrossRefGoogle Scholar
  9. 9.
    Nunomura K, Nagano K, Itagaki C et al (2005) Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics 4:1968–1976CrossRefPubMedGoogle Scholar
  10. 10.
    Wollscheid B, Bausch-Fluck D, Henderson C et al (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27:378–386CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bausch-Fluck D, Hofmann A, Bock T et al (2015) A mass spectrometric-derived cell surface protein atlas. PLoS One 10:e0121314CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Werner T, Sweetman G, Savitski MF et al (2014) Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal Chem 86:3594–3601CrossRefPubMedGoogle Scholar
  13. 13.
    Oda Y, Huang K, Cross FR et al (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96:6591–6596CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386CrossRefPubMedGoogle Scholar
  15. 15.
    Savitski MM, Sweetman G, Askenazi M et al (2011) Delayed fragmentation and optimized isolation width settings for improvement of protein identification and accuracy of isobaric mass tag quantification on Orbitrap-type mass spectrometers. Anal Chem 83:8959–8967CrossRefPubMedGoogle Scholar
  16. 16.
    Savitski MM, Mathieson T, Zinn N et al (2013) Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J Proteome Res 12:3586–3598CrossRefPubMedGoogle Scholar
  17. 17.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372CrossRefPubMedGoogle Scholar
  18. 18.
    Franken H, Mathieson T, Childs D et al (2015) Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat Protoc 10:1567–1593CrossRefPubMedGoogle Scholar
  19. 19.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906CrossRefPubMedGoogle Scholar
  20. 20.
    Silva JC, Gorenstein MV, Li GZ et al (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5:144–156CrossRefPubMedGoogle Scholar
  21. 21.
    Becher I, Savitski MM, Savitski MF et al (2013) Affinity profiling of the cellular kinome for the nucleotide cofactors ATP, ADP, and GTP. ACS Chem Biol 8:599–607CrossRefPubMedGoogle Scholar
  22. 22.
    Cox J, Hein MY, Luber CA et al (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Clamp JR, Hough L (1966) Some observations on the periodate oxidation of amino compounds. Biochem J 101:120–126CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rauniyar N, Yates JR III (2014) Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res 13:5293–5309CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    McAlister GC, Nusinow DP, Jedrychowski MP et al (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86:7150–7158CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Mathias Kalxdorf
    • 1
  • Hans Christian Eberl
    • 1
  • Marcus Bantscheff
    • 1
  1. 1.Cellzome, A GSK CompanyHeidelbergGermany

Personalised recommendations