Identification of Lipid Binding Modulators Using the Protein-Lipid Overlay Assay

  • Tuo-Xian Tang
  • Wen Xiong
  • Carla V. Finkielstein
  • Daniel G. S. Capelluto
Part of the Methods in Molecular Biology book series (MIMB, volume 1647)


The protein-lipid overlay assay is an inexpensive, easy-to-implement, and high-throughput methodology that employs nitrocellulose membranes to immobilize lipids in order to rapid screen and identify protein-lipid interactions. In this chapter, we show how this methodology can identify potential modulators of protein-lipid interactions by screening water-soluble lipid competitors or even the introduction of pH changes during the binding assay to identify pH-dependent lipid binding events.

Key words

Lipid-protein overlay assay Phospholipids Phosphoinositides Inositol 1,3-bisphosphate EEA1 FYVE Dishevelled-2 DEP Phafin2 Tollip pH effect 



We thank Janet Webster for critical reading and comments on the manuscript. We also thank Tiffany Radle and Morgan Vaughn for the optimization of the purification conditions of the GST-EEA1 FYVE domain. Work in the Capelluto laboratory is supported by the National Institutes of Health (NIAID).


  1. 1.
    Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610CrossRefPubMedGoogle Scholar
  2. 2.
    McNamara CR, Degterev A (2011) Small-molecule inhibitors of the PI3K signaling network. Future Med Chem 3:549–565CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Scott JL, Musselman CA, Adu-Gyamfi E et al (2012) Emerging methodologies to investigate lipid-protein interactions. Integr Biol (Camb) 4:247–258CrossRefGoogle Scholar
  4. 4.
    Nitulescu GM, Margina D, Juzenas P et al (2016) Akt inhibitors in cancer treatment: the long journey from drug discovery to clinical use (Review). Int J Oncol 48:869–885CrossRefPubMedGoogle Scholar
  5. 5.
    Busse RA, Scacioc A, Schalk AM et al (2016) Analyzing protein-phosphoinositide interactions with liposome flotation assays. Methods Mol Biol 1376:155–162CrossRefPubMedGoogle Scholar
  6. 6.
    Saliba AE, Vonkova I, Ceschia S et al (2014) A quantitative liposome microarray to systematically characterize protein-lipid interactions. Nat Methods 11:47–50CrossRefPubMedGoogle Scholar
  7. 7.
    Saliba AE, Vonkova I, Gavin AC (2015) The systematic analysis of protein-lipid interactions comes of age. Nat Rev Mol Cell Biol 16:753–761CrossRefPubMedGoogle Scholar
  8. 8.
    Dowler S, Kular G, Alessi DR (2002) Protein lipid overlay assay. Sci STKE 2002:pl6PubMedGoogle Scholar
  9. 9.
    Yu JW, Mendrola JM, Audhya A et al (2004) Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol Cell 13:677–688CrossRefPubMedGoogle Scholar
  10. 10.
    Gallego O, Betts MJ, Gvozdenovic-Jeremic J et al (2010) A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol Syst Biol 6:430CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Narayan K, Lemmon MA (2006) Determining selectivity of phosphoinositide-binding domains. Methods 39:122–133CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bonham KS, Orzalli MH, Hayashi K et al (2014) A promiscuous lipid-binding protein diversifies the subcellular sites of toll-like receptor signal transduction. Cell 156:705–716CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Naguib A, Bencze G, Cho H et al (2015) PTEN functions by recruitment to cytoplasmic vesicles. Mol Cell 58:255–268CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Murphy JE, Tacon D, Tedbury PR et al (2006) LOX-1 scavenger receptor mediates calcium-dependent recognition of phosphatidylserine and apoptotic cells. Biochem J 393:107–115CrossRefPubMedGoogle Scholar
  15. 15.
    Zimmermann P, Meerschaert K, Reekmans G et al (2002) PIP(2)-PDZ domain binding controls the association of syntenin with the plasma membrane. Mol Cell 9:1215–1225CrossRefPubMedGoogle Scholar
  16. 16.
    Klinkenberg D, Long KR, Shome K et al (2014) A cascade of ER exit site assembly that is regulated by p125A and lipid signals. J Cell Sci 127:1765–1778CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nakamura Y, Andres F, Kanehara K et al (2014) Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nat Commun 5:3553PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee SA, Eyeson R, Cheever ML et al (2005) Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch. Proc Natl Acad Sci U S A 102:13052–13057CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Capelluto DG, Zhao X, Lucas A et al (2014) Biophysical and molecular-dynamics studies of phosphatidic acid binding by the Dvl-2 DEP domain. Biophys J 106:1101–1111CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Drahos KE, Welsh JD, Finkielstein CV, Capelluto DG (2009) Sulfatides partition disabled-2 in response to platelet activation. PLoS One 4:e8007CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Alajlouni R, Drahos KE, Finkielstein CV, Capelluto DG (2011) Lipid-mediated membrane binding properties of Disabled-2. Biochim Biophys Acta 1808:2734–2744CrossRefPubMedGoogle Scholar
  22. 22.
    Xiao S, Brannon MK, Zhao X et al (2015) Tom1 modulates binding of Tollip to phosphatidylinositol 3-phosphate via a coupled folding and binding mechanism. Structure 23:1910–1920CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Tuo-Xian Tang
    • 1
    • 2
  • Wen Xiong
    • 1
    • 2
  • Carla V. Finkielstein
    • 3
  • Daniel G. S. Capelluto
    • 1
    • 2
  1. 1.Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity InstituteVirginia TechBlacksburgUSA
  2. 2.Center for Soft Matter and Biological PhysicsVirginia TechBlacksburgUSA
  3. 3.Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity InstituteVirginia TechBlacksburgUSA

Personalised recommendations