Advertisement

Probing Protein Kinase-ATP Interactions Using a Fluorescent ATP Analog

  • Leslie E. W. LaConte
  • Sarika Srivastava
  • Konark Mukherjee
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1647)

Abstract

Eukaryotic protein kinases are an intensely investigated class of enzymes which have garnered attention due to their usefulness as drug targets. Determining the regulation of ATP binding to a protein kinase is not only critical for understanding function in a cellular context but also for designing kinase-specific molecular inhibitors. Here, we provide a general procedure for characterizing ATP binding to eukaryotic protein kinases. The protocol can be adapted to identify the conditions under which a particular kinase is activated. The approach is simple, requiring only a fluorescent ATP analog such as TNP-ATP or MANT-ATP and an instrument to monitor changes in fluorescence. Although the interaction kinetics between a kinase and a given ATP analog may differ from that of native ATP, this disadvantage is offset by the ease of performing and interpreting this assay. Importantly, it can be optimized to probe a large variety of conditions under which the kinase-nucleotide binding might be affected.

Key words

Kinase Nucleotide ATP binding CASK Pseudokinase TNP-ATP Fluorescence 

Notes

Acknowledgments

The work was supported by startup funds to KM from VTCRI. Experiments were designed and performed by KM. The manuscript was conceived and written by LL, SS, and KM. KM and his laboratory are supported by R01EY024712 from NEI.

References

  1. 1.
    Manning G (2005) Genomic overview of protein kinases. WormBook 1–19. doi: 10.1895/wormbook.1.60.1
  2. 2.
    Casado P, Rodriguez-Prados JC, Cosulich SC et al (2013) Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci Signal 6(268):rs6. doi: 10.1126/scisignal.2003573 CrossRefPubMedGoogle Scholar
  3. 3.
    Dancey J, Sausville EA (2003) Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov 2(4):296–313. doi: 10.1038/nrd1066 CrossRefPubMedGoogle Scholar
  4. 4.
    Huang D, Zhou T, Lafleur K et al (2010) Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis. Bioinformatics 26(2):198–204. doi: 10.1093/bioinformatics/btp650 CrossRefPubMedGoogle Scholar
  5. 5.
    Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1(4):309–315. doi: 10.1038/nrd773 CrossRefPubMedGoogle Scholar
  6. 6.
    Johnson L (2007) Protein kinases and their therapeutic exploitation. Biochem Soc Trans 35(Pt 1):7–11. doi: 10.1042/BST0350007 CrossRefPubMedGoogle Scholar
  7. 7.
    Defert O, Boland S (2015) Kinase profiling in early stage drug discovery: sorting things out. Drug Discov Today Technol 18:52–61. doi: 10.1016/j.ddtec.2015.10.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Hastie CJ, McLauchlan HJ, Cohen P (2006) Assay of protein kinases using radiolabeled ATP: a protocol. Nat Protoc 1(2):968–971. doi: 10.1038/nprot.2006.149 CrossRefPubMedGoogle Scholar
  9. 9.
    Zegzouti H, Zdanovskaia M, Hsiao K, Goueli SA (2009) ADP-Glo: a bioluminescent and homogeneous ADP monitoring assay for kinases. Assay Drug Dev Technol 7(6):560–572. doi: 10.1089/adt.2009.0222 CrossRefPubMedGoogle Scholar
  10. 10.
    Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2(7):358–364. doi: 10.1038/nchembio799 CrossRefPubMedGoogle Scholar
  11. 11.
    Mukherjee K, Sharma M, Urlaub H et al (2008) CASK functions as a Mg2+−independent neurexin kinase. Cell 133(2):328–339. doi: 10.1016/j.cell.2008.02.036 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ungureanu D, Wu J, Pekkala T et al (2011) The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol 18(9):971–976. doi: 10.1038/nsmb.2099 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mukherjee K, Sharma M, Jahn R et al (2010) Evolution of CASK into a Mg2+−sensitive kinase. Sci Signal 3(119):ra33. doi: 10.1126/scisignal.2000800 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cheng K, Koland JG (1996) Nucleotide binding by the epidermal growth factor receptor protein-tyrosine kinase. Trinitrophenyl-ATP as a spectroscopic probe. J Biol Chem 271(1):311–318CrossRefPubMedGoogle Scholar
  15. 15.
    Guarnieri MT, Blagg BS, Zhao R (2011) A high-throughput TNP-ATP displacement assay for screening inhibitors of ATP-binding in bacterial histidine kinases. Assay Drug Dev Technol 9(2):174–183. doi: 10.1089/adt.2010.0289 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Stewart RC, VanBruggen R, Ellefson DD, Wolfe AJ (1998) TNP-ATP and TNP-ADP as probes of the nucleotide binding site of CheA, the histidine protein kinase in the chemotaxis signal transduction pathway of Escherichia coli. Biochemistry 37(35):12269–12279. doi: 10.1021/bi980970n CrossRefPubMedGoogle Scholar
  17. 17.
    Piluso G, D'Amico F, Saccone V et al (2009) A missense mutation in CASK causes FG syndrome in an Italian family. Am J Hum Genet 84(2):162–177. doi: 10.1016/j.ajhg.2008.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jakobi R, Traugh JA (1995) Site-directed mutagenesis and structure/function studies of casein kinase II correlate stimulation of activity by the beta subunit with changes in conformation and ATP/GTP utilization. Eur J Biochem 230(3):1111–1117CrossRefPubMedGoogle Scholar
  19. 19.
    Bostrom SL, Dore J, Griffith LC (2009) CaMKII uses GTP as a phosphate donor for both substrate and autophosphorylation. Biochem Biophys Res Commun 390(4):1154–1159. doi: 10.1016/j.bbrc.2009.10.107 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Motulsky HJ. Equation: One site—Fit total and nonspecific binding. http://www.graphpad.com/guides/prism/7/curve-fitting/index.htm?reg_one_site_fit_total_and_ns.htm. Accessed 4 Aug 2016
  21. 21.
    Meharena HS, Chang P, Keshwani MM et al (2013) Deciphering the structural basis of eukaryotic protein kinase regulation. PLoS Biol 11(10):e1001680. doi: 10.1371/journal.pbio.1001680 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Leslie E. W. LaConte
    • 1
  • Sarika Srivastava
    • 1
  • Konark Mukherjee
    • 1
    • 2
  1. 1.Virginia Tech Carilion Research InstituteRoanokeUSA
  2. 2.Department of Biological SciencesVirginia TechBlacksburgUSA

Personalised recommendations