Advertisement

Reverse Phase Protein Arrays and Drug Discovery

  • Kenneth G. Macleod
  • Bryan Serrels
  • Neil O. Carragher
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1647)

Abstract

Reverse Phase Protein Arrays (RPPA) represent a sensitive antibody-based proteomic approach, which enables simultaneous quantification of the abundance of multiple proteins and posttranslational modifications across multiple samples. Here, we provide protocols for RPPA performed on two distinct protein-binding substrates associated with two most commonly used RPPA platform technologies. We compare and contrast the respective advantages and limitations of each platform within the context of drug discovery applications.

Key words

Protein Array Antibody Multiplex Proteomics 

References

  1. 1.
    Paweletz CP, Charboneau L, Bichsel VE et al (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20(16):1981–1989CrossRefPubMedGoogle Scholar
  2. 2.
    Pawlak M, Schick E, Bopp MA, Schneider MJ, Oroszlan P, Ehrat M (2002) Zeptosens' protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics 2(4):383–393CrossRefPubMedGoogle Scholar
  3. 3.
    Weissenstein U, Schneider MJ, Pawlak M et al (2006) Protein chip based miniaturized assay for the simultaneous quantitative monitoring of cancer biomarkers in tissue extracts. Proteomics 6(5):1427–1436CrossRefPubMedGoogle Scholar
  4. 4.
    Boyd ZS, Wu QJ, O'brien C et al (2008) Proteomic analysis of breast cancer molecular subtypes and biomarkers of response to targeted kinase inhibitors using reverse-phase protein microarrays. Mol Cancer Ther 7(12):3695–3706CrossRefPubMedGoogle Scholar
  5. 5.
    Voshol H, Ehrat M, Traenkle J, Bertrand E, Van Oostrum J (2009) Antibody-based proteomics: analysis of signaling networks using reverse protein arrays. FEBS J 276(23):6871–6879CrossRefPubMedGoogle Scholar
  6. 6.
    Cardnell RJ, Feng Y, Diao L et al (2013) Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer. Clin Cancer Res 19(22):6322–6328CrossRefPubMedGoogle Scholar
  7. 7.
    Girotti MR, Lopes F, Preece N et al (2015) Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell 27(1):85–96CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Akbani R, Becker KF, Carragher N et al (2014) Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: a workshop report: the RPPA (reverse phase protein array) society. Mol Cell Proteomics 13(7):1625–1643CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70CrossRefGoogle Scholar
  10. 10.
    Mircean C, Shmulevich I, Cogdell D et al (2005) Robust estimation of protein expression ratios with lysate microarray technology. Bioinformatics 21(9):1935–1942CrossRefPubMedGoogle Scholar
  11. 11.
    Nishizuka S, Charboneau L, Young L et al (2003) Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc Natl Acad Sci U S A 100(24):14229–14234CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hu J, He X, Baggerly KA, Coombes KR, Hennessy BT, Mills GB (2007) Non-parametric quantification of protein lysate arrays. Bioinformatics 23(15):1986–1994CrossRefPubMedGoogle Scholar
  13. 13.
    Troncale S, Barbet A, Coulibaly L et al (2012) NormaCurve: a SuperCurve-based method that simultaneously quantifies and normalizes reverse phase protein array data. PLoS One 7(6):e38686CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sun M, Lai D, Zhang L, Huang X (2015) Modified SuperCurve method for analysis of reverse-phase protein Array data. J Comput Biol 22(8):765–769CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Kenneth G. Macleod
    • 1
  • Bryan Serrels
    • 1
  • Neil O. Carragher
    • 1
  1. 1.Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK

Personalised recommendations