Advertisement

A Photoaffinity Labeling-Based Chemoproteomics Strategy for Unbiased Target Deconvolution of Small Molecule Drug Candidates

  • Jason R. Thomas
  • Scott M. Brittain
  • Jennifer Lipps
  • Luis Llamas
  • Rishi K. Jain
  • Markus Schirle
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1647)

Abstract

The combination of photoaffinity labeling (PAL) and quantitative chemoproteomics enables the comprehensive, unbiased determination of protein interaction profiles to support target identification of bioactive small molecules. This approach is amenable to cells in culture and compatible with pharmacologically relevant transmembrane target classes like G-protein coupled receptors and ions channels which have been notoriously hard to access by conventional chemoproteomics approaches. Here, we describe a strategy that combines PAL probe titration and competition with excess parental compounds with the goal of enabling the identification of specific interactors as well as assessing the functional relevance of a binding event for the phenotype under investigation.

Key words

Photoaffinity labeling Chemoproteomics Quantitative proteomics Target identification Isobaric mass tags G-protein coupled receptor 

Notes

Acknowledgments

We thank John Damask and Stephen Marshall for their crucial role in building the data processing and analysis environment.

References

  1. 1.
    Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10(7):507–519. doi: 10.1038/nrd3480 CrossRefPubMedGoogle Scholar
  2. 2.
    Schirle M, Jenkins JL (2016) Identifying compound efficacy targets in phenotypic drug discovery. Drug Discov Today 21(1):82–89. doi: 10.1016/j.drudis.2015.08.001 CrossRefPubMedGoogle Scholar
  3. 3.
    Rix U, Superti-Furga G (2009) Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5(9):616–624. doi: 10.1038/nchembio.216 CrossRefPubMedGoogle Scholar
  4. 4.
    Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031. doi: 10.1007/s00216-007-1486-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404(4):939–965. doi: 10.1007/s00216-012-6203-4 CrossRefPubMedGoogle Scholar
  6. 6.
    Bassilana F, Carlson A, DaSilva JA et al (2014) Target identification for a Hedgehog pathway inhibitor reveals the receptor GPR39. Nat Chem Biol 10(5):343–349. doi: 10.1038/nchembio.1481 CrossRefPubMedGoogle Scholar
  7. 7.
    Mackinnon AL, Taunton J (2009) Target identification by Diazirine photo-cross-linking and click chemistry. Curr Protoc Chem Biol 1:55–73. doi: 10.1002/9780470559277.ch090167 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Savitski MM, Mathieson T, Zinn N et al (2013) Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J Proteome Res 12(8):3586–3598. doi: 10.1021/pr400098r CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Jason R. Thomas
    • 1
  • Scott M. Brittain
    • 1
  • Jennifer Lipps
    • 1
  • Luis Llamas
    • 1
  • Rishi K. Jain
    • 1
  • Markus Schirle
    • 1
  1. 1.Novartis Institutes for Biomedical ResearchCambridgeUSA

Personalised recommendations