Skip to main content

Ultrasound Imaging of Apoptosis: Spectroscopic Detection of DNA-Damage Effects In Vivo

  • Protocol
  • First Online:
Fast Detection of DNA Damage

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1644))

  • 1540 Accesses

Abstract

In this chapter, we describe two new methodologies: (1) application of high-frequency ultrasound spectroscopy for in vivo detection of cancer cell death in small animal models, and (2) extension of ultrasound spectroscopy to the lower frequency range (i.e., 1–10 MHz range) for the detection of cell death in vivo in preclinical and clinical settings. Experiments using tumor xenografts in mice and cancer treatments based on chemotherapy are described. Finally, we describe how one can detect cancer response to treatment in patients noninvasively early (within 1 week of treatment initiation) using low-frequency ultrasound spectroscopic imaging and advanced machine learning techniques. Color-coded images of ultrasound spectroscopic parameters, or parametric images, permit the delineation of areas of dead cells versus viable cells using high ultrasound frequencies, and the delineation of areas of therapy response in patient tumors using clinically relevant ultrasound frequencies. Depending on the desired resolution, parametric ultrasound images can be computed and displayed within minutes to hours after ultrasound examination for cell death. A noninvasive and express method of cancer response detection using ultrasound spectroscopy provides a framework for personalized medicine with regards to the treatment planning of refractory patients resulting in substantial improvements in patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  2. Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8:94–107

    Article  CAS  PubMed  Google Scholar 

  3. Chang J, Ormerod M, Powles TJ, Allred DC, Ashley SE, Dowsett M (2000) Apoptosis and proliferation as predictors of chemotherapy response in patients with breast carcinoma. Cancer 89:2145–2152

    Article  CAS  PubMed  Google Scholar 

  4. Nishimura R, Osako T, Okumura Y, Hayashi M, Totoyozumi Y, Arima N (2010) Ki-67 as a prognostic marker according to breast cancer subtype and a predictor of recurrence time in primary breast cancer. Exp Ther Med 1:747–754

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sharma U, Danishad KKA, Seenu V, Jagannathan NR (2009) Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed 22:104–113

    Article  PubMed  Google Scholar 

  6. Schelling M, Avril N, Nährig J et al (2000) Positron emission tomography using [(18)F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 18:1689–1695

    Article  CAS  Google Scholar 

  7. Falou O, Soliman H, Sadeghi-Naini A et al (2012) Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving Neoadjuvant chemotherapy. Transl Oncol 5:238–246

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oelze ML, O’Brien WD, Blue JP, Zachary JF (2004) Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging. IEEE Trans Med Imaging 23:764–771

    Article  PubMed  Google Scholar 

  9. Mamou J, Coron A, Oelze M et al (2011) Three-dimensional high-frequency backscatter and envelope quantification of cancerous human lymph nodes. Ultrasound Med Biol 37(3):345–357

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sannachi L, Tadayyon H, Sadeghi-Naini A, Tran W, Gandhi S, Wright F, Oelze M, Czarnota G (2014) Non-invasive evaluation of breast cancer response to chemotherapy using quantitative ultrasonic backscatter parameters. Med Image Anal 20:224–236

    Article  PubMed  Google Scholar 

  11. Sadeghi-Naini A, Falou O, Tadayyon H, Al-Mahrouki A, Tran W, Papanicolau N, Kolios MC, Czarnota GJ (2013) Conventional frequency ultrasonic biomarkers of cancer treatment response in vivo. Transl Oncol 6:234–243

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sadeghi-Naini A, Papanicolau N, Falou O et al (2013) Low-frequency quantitative ultrasound imaging of cell death in vivo. Med Phys 40:82901

    Article  Google Scholar 

  13. Tadayyon H, Sannachi L, Sadeghi-Naini A, Al-Mahrouki A, Tran W, Kolios MC, Czarnota GJ. Quantification of Ultrasonic Scattering Properties of In Vivo Tumor Cell Death in Mouse Models of Breast Cancer. Transl Oncol. 2015 Dec;8(6):463–73

    Google Scholar 

  14. Sadeghi-Naini A, Papanicolau N, Falou O et al (2013) Quantitative ultrasound evaluation of tumor cell death response in locally advanced breast cancer patients receiving chemotherapy. Clin Cancer Res 19:2163–2174

    Article  CAS  PubMed  Google Scholar 

  15. Sadeghi-Naini A, Sannachi L, Pritchard K, Trudeau M, Gandhi S, Wright FC, Zubovits J, Yaffe MJ, Kolios MC, Czarnota GJ (2014) Early prediction of therapy responses and outcomes in breast cancer patients using quantitative ultrasound spectral texture. Oncotarget 5:3497–3511

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gangeh MJ, Tadayyon H, Sannachi L, Sadeghi-Naini A, Tran WT, Czarnota GJ (2016) Computer aided Theragnosis using quantitative ultrasound spectroscopy and maximum mean discrepancy in locally advanced breast cancer. IEEE Trans Med Imaging 35:778–790

    Article  PubMed  Google Scholar 

  17. Tadayyon H, Sannachi L, Gangeh M, Sadeghi-Naini A, Tran W, Trudeau ME, Pritchard K, Ghandi S, Verma S, Czarnota GJ (2016) Quantitative ultrasound assessment of breast tumor response to chemotherapy using a multi-parameter approach. Oncotarget 7:45094–45111

    PubMed  PubMed Central  Google Scholar 

  18. Anderson JJ, Herd M-T, King MR et al (2010) Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms. Ultrason Imaging 32:48–64

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kolios MC, Czarnota GJ, Lee M, Hunt JW, Sherar MD (2002) Ultrasonic spectral parameter characterization of apoptosis. Ultrasound Med Biol 28:589–597

    Article  CAS  PubMed  Google Scholar 

  20. Czarnota GJ, Kolios MC, Hunt JW, Sherar MD (2002) Ultrasound imaging of apoptosis. DNA-damage effects visualized. Methods Mol Biol 203:257–277

    CAS  PubMed  Google Scholar 

  21. Brand S, Solanki B, Foster DB, Czarnota GJ, Kolios MC (2009) Monitoring of cell death in epithelial cells using high frequency ultrasound spectroscopy. Ultrasound Med Biol 35:482–493

    Article  PubMed  Google Scholar 

  22. Giordano SH (2003) Update on locally advanced breast cancer. Oncologist 8:521–530

    Article  PubMed  Google Scholar 

  23. Didenko VV (2011) DNA damage detection in situ, ex vivo, and in vivo: methods and protocols. In: Methods in molecular biology. Springer, Berlin

    Google Scholar 

  24. Falou O (2011) Modelling high frequency ultrasound scattering from cells and ultrasound contrast agents. Ph.D., Ryerson University, Toronto

    Google Scholar 

  25. Yao LX, Zagzebski JA, Madsen EL (1990) Backscatter coefficient measurements using a reference phantom to extract depth-dependent instrumentation factors. Ultrason Imaging 12:58–70

    Article  CAS  PubMed  Google Scholar 

  26. Faran JJ (1951) Sound scattering by cylinders and spheres. J Acoust Soc Am 23:405–418

    Article  Google Scholar 

  27. Insana MF, Wagner RF, Brown DG, Hall TJ (1990) Describing small-scale structure in random media using pulse-echo ultrasound. J Acoust Soc Am 87:179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vlad RM, Brand S, Giles A, Kolios MC, Czarnota GJ (2009) Quantitative ultrasound characterization of responses to radiotherapy in cancer mouse models. Clin Cancer Res 15:2067–2075

    Article  CAS  PubMed  Google Scholar 

  29. Duric N, Littrup P, Babkin A et al (2005) Development of ultrasound tomography for breast imaging: technical assessment. Med Phys 32:1375

    Article  PubMed  Google Scholar 

  30. Rice SD, Heinzman JM, Brower SL, Ervin PR, Song N, Shen K, Wang D (2010) Analysis of chemotherapeutic response heterogeneity and drug clustering based on mechanism of action using an in vitro assay. Anticancer Res 30:2805–2811

    CAS  PubMed  Google Scholar 

  31. Gangeh MJ, Sadeghi-Naini A, Kamel MS, Czarnota GJ (2013) Assessment of cancer therapy effects using texton-based characterization of quantitative ultrasound parametric images. In: 2013 IEEE 10th Int. Symp. Biomed. Imaging ISBI, pp 1372–1375

    Google Scholar 

  32. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987

    Article  Google Scholar 

  33. Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62:61–81

    Article  Google Scholar 

  34. Varma M, Zisserman A (2009) A statistical approach to material classification using image patch exemplars. IEEE Trans Pattern Anal Mach Intell 31:2032–2047

    Article  PubMed  Google Scholar 

  35. Gangeh MJ, El Kaffas A, Hashim A, Giles A, Czarnota GJ (2015) Advanced machine learning and textural methods in monitoring cell death using quantitative ultrasound spectroscopy. In: 2015 IEEE 12th Int. Symp. Biomed. Imaging ISBI, pp 646–650

    Google Scholar 

  36. Czarnota GJ, Kolios MC, Abraham J et al (1999) Ultrasound imaging of apoptosis: high-resolution noninvasive monitoring of programmed cell death in vitro, in situ and in vivo. Br J Cancer 819(3):520–527

    Article  Google Scholar 

  37. Czarnota GJ, Kolios MC (2010) Ultrasound detection of cell death. Imaging Med 2:17–28

    Article  Google Scholar 

  38. Gretton A, Borgwardt K, Rasch M, Schölkopf B, Smola A (2012) A kernel two-sample test. J Mach Learn Res 13:723–773

    Google Scholar 

  39. Gretton A, Herbrich R, Smola A, Bousquet O, Schölkopf B (2005) Kernel methods for measuring independence. J Mach Learn Res 6:2075–2129

    Google Scholar 

  40. Gangeh MJ, Sadeghi-Naini A, Diu M, Tadayyon H, Kamel MS, Czarnota GJ (2014) Categorizing extent of tumor cell death response to cancer therapy using quantitative ultrasound spectroscopy and maximum mean discrepancy. IEEE Trans Med Imaging 33:1390–1400

    Article  PubMed  Google Scholar 

  41. Gangeh MJ, Hashim A, Giles A, Czarnota GJ (2014) Cancer therapy prognosis using quantitative ultrasound spectroscopy and a kernel-based metric. Proc SPIE 9034:903406

    Article  Google Scholar 

  42. He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21:1263–1284

    Article  Google Scholar 

  43. Estabrooks A, Jo T, Japkowicz N (2004) A multiple resampling method for learning from imbalanced data sets. Comput Intell 20:18–36

    Article  Google Scholar 

  44. Clarke GM, Eidt S, Sun L, Mawdsley G, Zubovits JT, Yaffe MJ (2007) Whole-specimen histopathology: a method to produce whole-mount breast serial sections for 3-D digital histopathology imaging. Histopathology 50:232–242

    Article  CAS  PubMed  Google Scholar 

  45. Vlad R, Orlova V, Hunt J, Kolios M, Czarnota G (2008) Changes measured in the backscatter ultrasound signals during cell death can be potentially explained by an increase in cell size variance. Ultrason Imaging 29:256

    Google Scholar 

  46. Brand S, Weiss EC, Lemor RM, Kolios MC (2008) High frequency ultrasound tissue characterization and acoustic microscopy of intracellular changes. Ultrasound Med Biol 34:1396–1407

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

M.J.G holds the Natural Sciences and Engineering Research Council of Canada Post-doctoral Fellowship. G.J.C. holds a University of Toronto James and Mary Davie Chair in Breast Cancer Imaging and Ablation. Funding for these projects was provided by the Terry Fox Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Czarnota Ph.D., M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tadayyon, H., Gangeh, M.J., Vlad, R., Kolios, M.C., Czarnota, G.J. (2017). Ultrasound Imaging of Apoptosis: Spectroscopic Detection of DNA-Damage Effects In Vivo. In: Didenko, V. (eds) Fast Detection of DNA Damage. Methods in Molecular Biology, vol 1644. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7187-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7187-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7185-5

  • Online ISBN: 978-1-4939-7187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics