Skip to main content

Zebra Tail Amplification: Accelerated Detection of Apoptotic Blunt-Ended DNA Breaks by In Situ Ligation

  • Protocol
  • First Online:
Book cover Fast Detection of DNA Damage

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1644))

  • 1525 Accesses

Abstract

In situ ligation (ISL) is a simple and specific technique for apoptosis labeling in tissue sections. In its most economical version ISL uses ordinary PCR-labeled DNA fragments as probes. In tissue sections these makeshift probes are ligated to apoptotic DNA breaks by T4 DNA ligase. The approach can selectively label 5′PO4 DNA breaks with blunt ends, and is the histological equivalent of electrophoretic apoptotic ladder detection. The main drawback of this technique is its low speed, as it requires 18 h-incubation for efficient labeling. Here, we describe an easy modification of ISL which reduces the incubation time to 1 h and converts ISL into a rapid detection method taking ~3 h overall. Signal enhancement is achieved by a new type of isothermal amplification reaction which generates “zebra tails”— long and labeled extensions of the probes attached to DNA breaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagata S, Nagase H, Kawane K et al (2003) Degradation of chromosomal DNA during apoptosis. Cell Death Differ 10:108–116

    Article  CAS  PubMed  Google Scholar 

  2. Staley K, Blaschke A, Chun J (1997) Apoptotic DNA fragmentation is detected by a semiquantitative ligation-mediated PCR of blunt DNA ends. Cell Death Differ 4:66–75

    Article  CAS  PubMed  Google Scholar 

  3. Didenko VV, Ngo H, Baskin DS (2003) Early necrotic DNA degradation: presence of blunt-ended DNA breaks, 3′ and 5′ overhangs in apoptosis, but only 5′ overhangs in early necrosis. Am J Pathol 162:1571–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hornsby PJ, Didenko VV (2011) In situ ligation: a decade and a half of experience. Methods Mol Biol 682:49–63. doi:10.1007/978-1-60,327-409-8_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Didenko VV (2002) Detection of specific double-strand DNA breaks and apoptosis in situ using T4 DNA ligase. Methods Mol Biol 203:143–151

    CAS  PubMed  Google Scholar 

  6. Didenko VV, Hornsby PJ (1996) Presence of double-strand breaks with single-base 3′ overhangs in cells undergoing apoptosis but not necrosis. J Cell Biol 135:1369–1376

    Article  CAS  PubMed  Google Scholar 

  7. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  8. Loo DT (2011) In situ detection of apoptosis by the TUNEL assay: an overview of techniques. Methods Mol Biol 682:3–13. doi:10.1007/978-1-60,327-409-8_1

    Article  CAS  PubMed  Google Scholar 

  9. Charriaut-Marlangue C, Ben-Ari Y (1995) A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7:61–64

    Article  CAS  PubMed  Google Scholar 

  10. Wolvekamp MC, Darby IA, Fuller PJ (1998) Cautionary note on the use of end-labeling DNA fragments for detection of apoptosis. Pathology 30:267–271

    Article  CAS  PubMed  Google Scholar 

  11. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H et al (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21:1465–1468

    CAS  PubMed  Google Scholar 

  12. Sloop GD, Roa JC, Delgado AG et al (1999) Histologic sectioning produces TUNEL reactivity. A potential cause of false-positive staining. Arch Pathol Lab Med 123:529–532

    CAS  PubMed  Google Scholar 

  13. Pulkkanen KJ, Laukkanen MO, Naarala J, Yla-Herttuala S (2000) False-positive apoptosis signal in mouse kidney and liver detected with TUNEL assay. Apoptosis 5:329–333

    Article  CAS  PubMed  Google Scholar 

  14. Bassotti G, Villanacci V, Fisogni S et al (2007) Comparison of three methods to assess enteric neuronal apoptosis in patients with slow transit constipation. Apoptosis 12:329–332

    Article  CAS  PubMed  Google Scholar 

  15. Lawrence MD, Blyth BJ, Ormsby RJ et al (2013) False-positive TUNEL staining observed in SV40 based transgenic murine prostate cancer models. Transgenic Res 22:1037–1047. doi:10.1007/s11248-013-9694-7

    Article  CAS  PubMed  Google Scholar 

  16. Haunstetter A, Izumo S (2012) Strategies to prevent apoptosis. In: Hasenfuss G, Marban E (eds) Molecular approaches to heart failure therapy, 3rd edn. Springer Science & Business Media, Berlin

    Google Scholar 

  17. Galluzzi L, Aaronson SA, Abrams J et al (2009) Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16:1093–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Apoptosis Detection Using Terminal Transferase and Biotin-16-dUTP (TUNEL Enzyme Method). (2016) http://www.ihcworld.com/_protocols/apoptosis/tunel_enzyme.htm.

  19. Didenko VV (2011) In situ ligation simplified: using PCR fragments for detection of double-strand DNA breaks in tissue sections. Methods Mol Biol 682:65–75. doi:10.1007/978-1-60,327-409-8_6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maunders MJ (1993) DNA and RNA ligases (EC 6.5.1.1, EC 6.5.1.2, EC 6.5.1.3). Methods Mol Biol 16:213–230. doi:10.1385/0-89,603-234-5:213

    CAS  PubMed  Google Scholar 

  21. Hauser P, Wang S, Didenko VV (2017) Apoptotic bodies: selective detection in extracellular vesicles. Methods Mol Biol 1554:200–193. doi:10.1007/978-1-4939-6759-9_12

    Google Scholar 

  22. Schlissel M, Constantinescu A, Morrow T et al (1993) Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev 7:2520–2532

    Article  CAS  PubMed  Google Scholar 

  23. van Gent DC, Hoeijmakers JHJ, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2:196–206

    Article  PubMed  Google Scholar 

  24. Longhese MP, Guerini I, Baldo V, Clerici M (2008) Surveillance mechanisms monitoring chromosome breaks during mitosis and meiosis. DNA Repair 7:545–557

    Article  CAS  PubMed  Google Scholar 

  25. Sweeney PJ, Walker JM (1993) Proteinase K (EC 3.4.21.14). Methods Mol Biol 16:305–311. doi:10.1385/0-89,603-234-5:305

    CAS  PubMed  Google Scholar 

  26. Yang L, Didenko VV, Noda A et al (1995) Increased expression of p21Sdi1 in adrenocortical cells when they are placed in culture. Exp Cell Res 221:126–131

    Article  CAS  PubMed  Google Scholar 

  27. Koda M, Takemura G, Kanoh M et al (2003) Myocytes positive for in situ markers for DNA breaks in human hearts which are hypertrophic, but neither failed nor dilated: a manifestation of cardiac hypertrophy rather than failure. J Pathol 199:229–236

    Article  PubMed  Google Scholar 

  28. Okada H, Takemura G, Koda M et al (2005) Myocardial apoptotic index based on in situ DNA nick end-labeling of endomyocardial biopsies does not predict prognosis of dilated cardiomyopathy. Chest 128:1060–1062

    Article  PubMed  Google Scholar 

  29. Schoppet M, Al-Fakhri N, Franke FE et al (2004) Localization of osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, and receptor activator of nuclear factor-kappa B ligand in Mönckeberg’s sclerosis and atherosclerosis. J Clin Endocrinol Metab 89:4104–4112

    Article  CAS  PubMed  Google Scholar 

  30. Audo I, Darjatmoko SR, Schlamp CL et al (2003) Vitamin D analogues increase p53, p21, and apoptosis in a xenograft model of human retinoblastoma. Invest Ophthalmol Vis Sci 44:4192–4199

    Article  PubMed  Google Scholar 

  31. Al-Fakhri N, Chavakis T, Schmidt-Woll T et al (2003) Induction of apoptosis in vascular cells by plasminogen activator inhibitor-1 and high molecular weight kininogen correlates with their anti-adhesive properties. J Biol Chem 384:423–435

    CAS  Google Scholar 

  32. Matsuoka R, Ogawa K, Yaoita H et al (2002) Characteristics of death of neonatal rat cardiomyocytes following hypoxia or hypoxia-reoxygenation: the association of apoptosis and cell membrane disintegrity. Heart Vessels 16:241–248

    Article  PubMed  Google Scholar 

  33. Guerra S, Leri A, Wang X et al (1999) Myocyte death in the failing human heart is gender dependent. Circ Res 85:856–866

    Article  CAS  PubMed  Google Scholar 

  34. Leri A, Claudio PP, Li Q et al (1998) Strech-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2 to Bax protein ratio in the cell. J Clin Invest 101:1326–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murata I, Takemura G, Asano K et al (2002) Apoptotic cell loss following cell proliferation in renal glomeruli of Otsuka Long-Evans Tokushima Fatty rats, a model of human type 2 diabetes. Am J Nephrol 22:587–595

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

I am grateful to Candace Minchew for her outstanding technical assistance.

This research was supported by grant R01 NS082553 from the National Institute of Neurological Disorders and Stroke, National Institutes of Health and by grants R21 CA178965 from the National Cancer Institute, National Institutes of Health and R21 AR066931 National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Didenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Didenko, V.V. (2017). Zebra Tail Amplification: Accelerated Detection of Apoptotic Blunt-Ended DNA Breaks by In Situ Ligation. In: Didenko, V. (eds) Fast Detection of DNA Damage. Methods in Molecular Biology, vol 1644. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7187-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7187-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7185-5

  • Online ISBN: 978-1-4939-7187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics