Skip to main content

Genome Sequencing of Steroid Producing Bacteria Using Ion Torrent Technology and a Reference Genome

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1645))

Abstract

The Next-Generation Sequencing technology has enormously eased the bacterial genome sequencing and several tens of thousands of genomes have been sequenced during the last 10 years. Most of the genome projects are published as draft version, however, for certain applications the complete genome sequence is required.

In this chapter, we describe the strategy that allowed the complete genome sequencing of Mycobacterium neoaurum NRRL B-3805, an industrial strain exploited for steroid production, using Ion Torrent sequencing reads and the genome of a close strain as the reference. This protocol can be applied to analyze the genetic variations between closely related strains; for example, to elucidate the point mutations between a parental strain and a random mutagenesis-derived mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischmann RD, Adams MD, White O et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  2. Binnewies TT, Motro Y, Hallin PF et al (2006) Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct Integr Genomics 6:165–185

    Article  CAS  PubMed  Google Scholar 

  3. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shendure J, Porreca GJ, Reppas NB et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    Article  CAS  PubMed  Google Scholar 

  5. Buermans HPJ, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941

    Article  CAS  PubMed  Google Scholar 

  6. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  7. Land M, Hauser L, Jun SR et al (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15:141–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:110–120

    Article  CAS  PubMed  Google Scholar 

  9. Hoffmann S, Otto C, Kurtz S et al (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5:e1000502

    Article  PubMed  PubMed Central  Google Scholar 

  10. Caboche S, Audebert C, Lemoine Y et al (2014) Comparison of mapping algorithms used in high-throughput sequencing: application to Ion Torrent data. BMC Genomics 15:264

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bonfield JK, Whitwham A (2010) Gap5—editing the billion fragment sequence assembly. Bioinformatics 26:1699–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gurevich A, Saveliev V, Vyahhi N et al (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoffmann S, Otto C, Doose G et al (2014) A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 15:R34

    Article  PubMed  PubMed Central  Google Scholar 

  14. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li H (2011) Improving SNP discovery by base alignment quality. Bioinformatics 27:1157–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darling ACE, Mau B, Blattner FR et al (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rissman AI, Mau B, Biehl BS et al (2009) Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 25:2071–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  23. McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van der Auwera GA, Carneiro MO, Hartl C et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.1033

    Google Scholar 

  26. Vincent AT, Derome N, Boyle B et al (2016) Next-generation sequencing (NGS) in the microbiological world: how to make the most of your money. J Microbiol Methods. doi:10.1016/j.mimet.2016.02.016

    PubMed  Google Scholar 

  27. Ajay SS, Parker SCJ, Abaan HO et al (2011) Accurate and comprehensive sequencing of personal genomes. Genome Res 21:1498–1505

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shtratnikova VY, Bragin EY, Dovbnya DV et al (2014) Complete genome sequence of sterol-transforming Mycobacterium neoaurum strain VKM Ac-1815D. Genome Announc 2:12–13

    Article  Google Scholar 

  29. Rodríguez-García A, Fernández-Alegre E, Morales A et al (2016) Complete genome sequence of “Mycobacterium neoaurum” NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. J Biotechnol 224:64–65

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was fully supported by a grant of the European Union program ERA-IB [MySterI (EIB.12.010)] through the APCIN call of the Spanish Ministry of Economy and Competitiveness (MINECO, Spain) (PCIN-2013-024-C02-01). The authors want to thank the European Union program ERA-IB; the Spanish Ministry of Economy and Competitiveness (MINECO, Spain) and the MySterI Consortium (INBIOTEC, Pharmins Ltd., University of York, SINTEF, Technische Universität Dortmund and Gadea Biopharma S.L.). We thank J. Merino, B. Martín and A. Casenave for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Sola-Landa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sola-Landa, A., Rodríguez-García, A., Barreiro, C., Pérez-Redondo, R. (2017). Genome Sequencing of Steroid Producing Bacteria Using Ion Torrent Technology and a Reference Genome. In: Barredo, JL., Herráiz, I. (eds) Microbial Steroids. Methods in Molecular Biology, vol 1645. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7183-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7183-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7182-4

  • Online ISBN: 978-1-4939-7183-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics