Skip to main content

FLPing Genes On and Off in Drosophila

  • Protocol
  • First Online:
Book cover Site-Specific Recombinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1642))

Abstract

The fruit fly, Drosophila melanogaster, has been a favorite experimental system of developmental biologists for more than a century. One of the most attractive features of this model system is the clarity by which one can analyze mutant phenotypes. Most genes are found in single copies, and loss-of-function mutants often have obvious phenotypes that can be analyzed during development and in adulthood. As with all metazoans, a significant fraction of Drosophila genes are used during both embryonic and postembryonic development, and null mutants often die during embryogenesis thereby precluding the analysis of postembryonic tissues. For several decades researchers worked around this problem by either studying gynandromorphs or irradiating chromosomes carrying mutations in the hope of inducing mitotic recombination which would then allow for the analysis of mutant phenotypes in smaller populations of cells. The former method suffers from the fact that mutations in the gene of interest are often lethal when generated in large sectors, which is a hallmark of gynandromorphs. Clonal induction with the latter method occurs at relatively low frequencies making this method laborious. The introduction of the yeast FRT System/FRT site-directed recombination system to Drosophila has made generating loss-of-function mosaic clones simple and easy. Over the years several variants of this method have allowed developmental biologists to remove genes, overexpress genes, and even express one gene in patches of cells that are mutant for a second gene. In this review we will briefly discuss some of various FRT System/FRT-based approaches that are being used to manipulate gene expression in Drosophila. The individual FRT System/FRT-based methods are described in the papers that are cited herein. We will outline the procedure that our lab uses to prepare and analyze mosaic clones in Drosophila eye-antennal imaginal discs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan TH (1914) Mosaics and gynandromorphs in Drosophila. Proc Soc Exp Biol Med 11:171–172

    Article  Google Scholar 

  2. Morgan TH, Bridges CB (1919) The origin of gynandromorphs. Carn Inst Wash Publ 278:1–22

    Google Scholar 

  3. Sturtevant AH (1929) The claret mutant type of Drosophila simulans: a study of chromosome elimination and cell lineage. Z Wiss Zool Abt A 135:323–356

    Google Scholar 

  4. Baker WK (1978) A fine-structure gynandromorph fate map of the Drosophila head. Genetics 88:743–754

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Garcia-Bellido A, Merriam JR (1969) Cell lineage of the imaginal discs in Drosophila gynandromorphs. J Exp Zool 170:61–75

    Article  CAS  PubMed  Google Scholar 

  6. Parks HB (1936) Cleavage patterns in Drosophila and mosaic formation. Am Entom Soc 29:350–392

    Article  Google Scholar 

  7. Patterson JT, Stone W (1938) Gynandromorphs in Drosophila melanogaster. Univ Texas Publ 3825:1–67

    Google Scholar 

  8. Ripoll P (1972) The embryonic organization of the imaginal wing disk of Drosophila melanogaster. Wilhelm Roux Arch Entw Mech Organ 1969:200–215

    Article  Google Scholar 

  9. Geigy R (1931) Erzeugung rein imaginaler Defekte durch Ultraviolete Eibestrahlung bei Drosophila melanogaster. Roux’ Arch Entw Mech Organ 125:406–447

    Article  Google Scholar 

  10. Howland RB, Child GP (1935) Experimental studies on development in Drosophila melanogaster. I. Removal of protoplasmic materials during late cleavage and early embryonic stages. J Exp Zool 70(3):33–56

    Article  Google Scholar 

  11. Lohs-Schardin M, Cremer C, Nusslein-Volhard C (1979a) A fate map for the larval epidermis of Drosophila melanogaster: localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev Biol 73:239–255

    Article  CAS  PubMed  Google Scholar 

  12. Lohs-Schardin M, Sander K, Cremer C, Cremer T, Zorn C (1979b) Localized ultraviolet laser microbeam irradiation of early Drosophila embryos: fate maps based on location and frequency of adult defects. Dev Biol 68:533–545

    Article  CAS  PubMed  Google Scholar 

  13. Poulson DF (1950) Histogenesis, organogenesis and differentiation in the embryo of Drosophila melanogaster. In: Demerec M (ed) Biology of Drosophila. Wiley, New York, pp 168–274

    Google Scholar 

  14. Hotta Y, Benzer S (1970) Genetic dissection of the Drosophila nervous system by means of mosaics. Proc Natl Acad Sci U S A 67:1156–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stern C (1936) Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21:625–730

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohen SM (1993) Imaginal disc development. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 747–841

    Google Scholar 

  17. Friesen H (1936) Spermatogoniales crossing-over bei Drosophila. Z Indukt Abstammungs Vererbungsl 71:501–526

    Google Scholar 

  18. Patterson JT (1929) The production of mutations in somatic cells of Drosophila melanogaster by means of X-rays. J Exp Zool 53:327–372

    Article  Google Scholar 

  19. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509

    Article  CAS  PubMed  Google Scholar 

  20. Chou TB, Perrimon N (1992) Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131:643–653

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Golic KG (1991) Site-specific recombination between homologous chromosomes in Drosophila. Science 252:958–961

    Article  CAS  PubMed  Google Scholar 

  22. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237

    CAS  PubMed  Google Scholar 

  23. Xu T, Rubin GM (2012) The effort to make mosaic analysis a household tool. Development 139:4501–4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duffy JB, Harrison DA, Perrimon N (1998) Identifying loci required for follicular patterning using directed mosaics. Development 125:2263–2271

    CAS  PubMed  Google Scholar 

  25. Newsome TP, Asling B, Dickson BJ (2000) Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127:851–860

    CAS  PubMed  Google Scholar 

  26. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  27. Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ, Halder G (2002) Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129:5719–5730

    Article  CAS  PubMed  Google Scholar 

  28. Tapon N, Ito N, Dickson BJ, Treisman JE, Hariharan IK (2001) The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105:345–355

    Article  CAS  PubMed  Google Scholar 

  29. Wu S, Huang J, Dong J, Pan D (2003) Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114:445–456

    Article  CAS  PubMed  Google Scholar 

  30. Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124:761–771

    CAS  PubMed  Google Scholar 

  31. Pignoni F, Zipursky SL (1997) Induction of Drosophila eye development by decapentaplegic. Development 124:271–278

    CAS  PubMed  Google Scholar 

  32. Struhl G, Basler K (1993) Organizing activity of wingless protein in Drosophila. Cell 72:527–540

    Article  CAS  PubMed  Google Scholar 

  33. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  CAS  PubMed  Google Scholar 

  34. Bosch JA, Tran NH, Hariharan IK (2015) CoinFLP: a system for efficient mosaic screening and for visualizing clonal boundaries in Drosophila. Development 142:597–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hadjieconomou D, Rotkopf S, Alexandre C, Bell DM, Dickson BJ, Salecker I (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8:260–266

    Article  CAS  PubMed  Google Scholar 

  36. Worley MI, Setiawan L, Hariharan IK (2013) TIE-DYE: a combinatorial marking system to visualize and genetically manipulate clones during development in Drosophila melanogaster. Development 140:3275–3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu HH, Chen CH, Shi L, Huang Y, Lee T (2009) Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12:947–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Evans CJ, Olson JM, Ngo KT, Kim E, Lee NE, Kuoy E, Patananan AN, Sitz D, Tran P, Do MT et al (2009) G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 6:603–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254

    Article  CAS  PubMed  Google Scholar 

  40. Anderson AM, Weasner BM, Weasner BP, Kumar JP (2012) Dual transcriptional activities of SIX proteins define their roles in normal and ectopic eye development. Development 139:991–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spratford CM, Kumar JP (2013) Extramacrochaetae imposes order on the Drosophila eye by refining the activity of the hedgehog signaling gradient. Development 140:1994–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spratford CM, Kumar JP (2015) Inhibition of daughterless by Extramacrochaetae mediates notch-induced cell proliferation. Development 142:2058–2068

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dokucu ME, Zipursky SL, Cagan RL (1996) Atonal, rough and the resolution of proneural clusters in the developing Drosophila Retina. Development 122:4139–4147

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Donald Ready and Kevin Moses for the original protocol for the dissection of eye-antennal imaginal discs. This work is supported by a grant from the National Eye Institute (R01 EY014863) to Justin P. Kumar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin P. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Weasner, B.M., Zhu, J., Kumar, J.P. (2017). FLPing Genes On and Off in Drosophila . In: Eroshenko, N. (eds) Site-Specific Recombinases. Methods in Molecular Biology, vol 1642. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7169-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7169-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7167-1

  • Online ISBN: 978-1-4939-7169-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics