Advertisement

Immunohistochemical Procedures for Characterizing the Retinal Expression Patterns of Cre Driver Mouse Lines

  • Qi LuEmail author
  • Zhuo-Hua Pan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1642)

Abstract

The retina is a thin neural tissue sitting on the backside of the eye, composed of light-sensing cells, interneurons, and output ganglion neurons. The latter send electrical signals to higher visual centers in the brain. Transgenic mouse lines are becoming one of the most valuable mammalian animal models for the study of visual signal processing within the retina. Especially, the generation of Cre recombinase transgenic mouse lines provides a powerful tool for genetic manipulation. A key step for the utilization of transgenic lines is the characterization of their transgene expression patterns in the retina. Here we describe a standard protocol for characterizing the expression pattern of the Cre recombinase or fluorescent proteins in the retina with an immunohistochemical approach.

Key words

Immunocytochemistry Immunostaining Cre recombinase Genotyping Cryosection Fluorescent microscopy 

References

  1. 1.
    Heintz N (2004) Gene expression nervous system atlas (GENSAT). Nat Neurosci 7(5):483. doi: 10.1038/nn0504-483 CrossRefPubMedGoogle Scholar
  2. 2.
    Tang JC, Rudolph S, Dhande OS, Abraira VE, Choi S, Lapan SW, Drew IR, Drokhlyansky E, Huberman AD, Regehr WG, Cepko CL (2015) Cell type-specific manipulation with GFP-dependent Cre recombinase. Nat Neurosci 18(9):1334–1341. doi: 10.1038/nn.4081 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Le YZ, Ash JD, Al-Ubaidi MR, Chen Y, Ma JX, Anderson RE (2004) Targeted expression of Cre recombinase to cone photoreceptors in transgenic mice. Mol Vis 10:1011–1018PubMedGoogle Scholar
  4. 4.
    Ivanova E, Hwang GS, Pan ZH (2010) Characterization of transgenic mouse lines expressing Cre recombinase in the retina. Neuroscience 165(1):233–243. doi: 10.1016/j.neuroscience.2009.10.021 CrossRefPubMedGoogle Scholar
  5. 5.
    Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99–109CrossRefPubMedGoogle Scholar
  6. 6.
    Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6(1):7–28CrossRefPubMedGoogle Scholar
  7. 7.
    Madisen L, Zwingman TA, Sunkin SM, SW O, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. doi: 10.1038/nn.2467 CrossRefPubMedGoogle Scholar
  8. 8.
    Jackson (2016) Jackson lab. https://www.jax.org/jax-mice-and-services. Accessed 7 Apr 2016
  9. 9.
  10. 10.
    Siegert S, Scherf BG, Del Punta K, Didkovsky N, Heintz N, Roska B (2009) Genetic address book for retinal cell types. Nat Neurosci 12(9):1197–1204. doi: 10.1038/nn.2370 CrossRefPubMedGoogle Scholar
  11. 11.
    Akimoto M, Filippova E, Gage PJ, Zhu X, Craft CM, Swaroop A (2004) Transgenic mice expressing Cre-recombinase specifically in M- or S-cone photoreceptors. Invest Ophthalmol Vis Sci 45(1):42–47CrossRefPubMedGoogle Scholar
  12. 12.
    Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925. doi: 10.1038/nature02033 CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang XM, Chen BY, Ng AH, Tanner JA, Tay D, So KF, Rachel RA, Copeland NG, Jenkins NA, Huang JD (2005) Transgenic mice expressing Cre-recombinase specifically in retinal rod bipolar neurons. Invest Ophthalmol Vis Sci 46(10):3515–3520. doi: 10.1167/iovs.04-1201 CrossRefPubMedGoogle Scholar
  14. 14.
    Lu Q, Ivanova E, Ganjawala TH, Pan ZH (2013) Cre-mediated recombination efficiency and transgene expression patterns of three retinal bipolar cell-expressing Cre transgenic mouse lines. Mol Vis 19:1310–1320PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wassle H (2004) Types of bipolar cells in the mouse retina. J Comp Neurol 469(1):70–82. doi: 10.1002/cne.10985 CrossRefPubMedGoogle Scholar
  16. 16.
    Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, Choi MJ, Lauzon D, Lowell BB, Elmquist JK (2011) Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab 13(2):195–204. doi: 10.1016/j.cmet.2011.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang J, Zhang L, Jiao H, Zhang Q, Zhang D, Lou D, Katz JL, Xu M (2006) C-Fos facilitates the acquisition and extinction of cocaine-induced persistent changes. J Neurosci 26(51):13287–13296. doi: 10.1523/JNEUROSCI.3795-06.2006 CrossRefPubMedGoogle Scholar
  18. 18.
    Grimes WN, Seal RP, Oesch N, Edwards RH, Diamond JS (2011) Genetic targeting and physiological features of VGLUT3+ amacrine cells. Vis Neurosci 28(5):381–392. doi: 10.1017/S0952523811000290 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71(1):3–9CrossRefPubMedGoogle Scholar
  20. 20.
    Heimer-McGinn V, Young P (2011) Efficient inducible pan-neuronal cre-mediated recombination in SLICK-H transgenic mice. Genesis 49(12):942–949. doi: 10.1002/dvg.20777 CrossRefPubMedGoogle Scholar
  21. 21.
    Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Buch T, Waisman A, Schmedt C, Jegla T, Panda S (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One 3(6):e2451. doi: 10.1371/journal.pone.0002451 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297(5579):211–218. doi: 10.1126/science.1071795 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hebert JM, McConnell SK (2000) Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev Biol 222(2):296–306. doi: 10.1006/dbio.2000.9732 CrossRefPubMedGoogle Scholar
  24. 24.
    Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B, Mann J, Vassileva G, McMahon A (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12(1):11–24CrossRefPubMedGoogle Scholar
  25. 25.
    Frugier T, Tiziano FD, Cifuentes-Diaz C, Miniou P, Roblot N, Dierich A, Le Meur M, Melki J (2000) Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy. Hum Mol Genet 9(5):849–858CrossRefPubMedGoogle Scholar
  26. 26.
    Ueki Y, Ash JD, Zhu M, Zheng L, Le YZ (2009) Expression of Cre recombinase in retinal Muller cells. Vis Res 49(6):615–621. doi: 10.1016/j.visres.2009.01.012 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Anatomy and Cell BiologyWayne State University School of MedicineDetroitUSA
  2. 2.Department of OphthalmologyKresge Eye Institute, Wayne State University School of MedicineDetroitUSA

Personalised recommendations