Assessing Structure–Function Relations in Mice Using the Forced Oscillation Technique and Quantitative Histology

  • Harikrishnan Parameswaran
  • Béla Suki
Part of the Methods in Molecular Biology book series (MIMB, volume 1639)


The structure and function of the lung gradually becomes compromised during the progression of emphysema. In this chapter, we first describe how to assess and evaluate lung function using the forced oscillation technique. Next, we provide details on how to use the Flexivent system to measure respiratory mechanical parameters in mice. We also describe the outlines of how to set up a homemade forced oscillatory system and use it to measure respiratory mechanics. To characterize the structure from standard histological images, we describe a method that is highly sensitive to early emphysema. Correlating structural information such as equivalent alveolar diameter and its variance with respiratory elastance or compliance, provides structure–function relationships that can subsequently reveal novel mechanisms of emphysema progression or be used to track the effectiveness of treatment.

Key words

Emphysema Lung elastance Compliance Airspace enlargement Alveolar diameter 



B. Suki was supported by the National Institutes of Health Grants HL-111745 and H. Parameswaran was supported by HL129468.


  1. 1.
    Snider G, Kleinerman J, Thurlbeck W, Bengali Z (1985) The definition of emphysema. Report of a national heart, lung, and blood institute, division of lung diseases workshop. Am Rev Respir Dis 132:182–185Google Scholar
  2. 2.
    Stockley RA, Mannino D, Barnes PJ (2009) Burden and pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc 6(6):524–526. doi: 10.1513/pats.200904-016DS. 6/6/524 [pii]CrossRefPubMedGoogle Scholar
  3. 3.
    Tuder RM, McGrath S, Neptune E (2003) The pathobiological mechanisms of emphysema models: what do they have in common? Pulm Pharmacol Ther 16(2):67–78CrossRefPubMedGoogle Scholar
  4. 4.
    Celli BR, MacNee W, Agusti A, Anzueto A, Berg B, Buist AS, Calverley PMA, Chavannes N, Dillard T, Fahy B, Fein A, Heffner J, Lareau S, Meek P, Martinez F, McNicholas W, Muris J, Austegard E, Pauwels R, Rennard S, Rossi A, Siafakas N, Tiep B, Vestbo J, Wouters E, ZuWallack R (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23:932–946. doi: 10.1183/09031936.04.00014304 CrossRefPubMedGoogle Scholar
  5. 5.
    Girod CE, King TEJ (2005) COPD: a dust-induced disease? Chest 128:3055–3064. doi: 10.1378/chest.128.4.3055 CrossRefPubMedGoogle Scholar
  6. 6.
    Pauwels RA, Rabe KF (2004) Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet 364:613–620. doi: 10.1016/S0140-6736(04)16855-4 CrossRefPubMedGoogle Scholar
  7. 7.
    Tsuji T, Aoshiba K, Nagai A (2006) Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med 174:886–893. doi: 10.1164/rccm.200509-1374OC CrossRefPubMedGoogle Scholar
  8. 8.
    Bishai JM, Mitzner W (2008) Effect of severe calorie restriction on the lung in two strains of mice. Am J Physiol Lung Cell Mol Physiol 295:L356–L362. doi: 10.1152/ajplung.00514.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Karlinsky JB, Goldstein RH, Ojserkis B, Snider GL (1986) Lung mechanics and connective tissue levels in starvation-induced emphysema in hamsters. Am J Phys 251:R282–R288Google Scholar
  10. 10.
    Ganrot PO, Laurell CB, Eriksson S (1967) Obstructive lung disease and trypsin inhibitors in alpha-1-antitrypsin deficiency. Scand J Clin Lab Invest 19:205–208CrossRefPubMedGoogle Scholar
  11. 11.
    Kononov S, Brewer K, Sakai H, Cavalcante FS, Sabayanagam CR, Ingenito EP, Suki B (2001) Roles of mechanical forces and collagen failure in the development of elastase-induced emphysema. Am J Respir Crit Care Med 164(10 Pt 1):1920–1926CrossRefPubMedGoogle Scholar
  12. 12.
    Suki B, Lutchen KR, Ingenito EP (2003) On the progressive nature of emphysema: roles of proteases, inflammation, and mechanical forces. Am J Respir Crit Care Med 168(5):516–521CrossRefPubMedGoogle Scholar
  13. 13.
    Parameswaran H, Majumdar A, Suki B (2011) Linking microscopic spatial patterns of tissue destruction in emphysema to macroscopic decline in stiffness using a 3D computational model. PLoS Comput Biol 7(4):e1001125. doi: 10.1371/journal.pcbi.1001125. ARTN e1001125CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bates JH, Irvin CG, Farre R, Hantos Z (2011) Oscillation mechanics of the respiratory system. Compr Physiol 1(3):1233–1272. doi: 10.1002/cphy.c100058 PubMedGoogle Scholar
  15. 15.
    Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ (1992) Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol 72(1):168–178CrossRefPubMedGoogle Scholar
  16. 16.
    Brewer KK, Sakai H, Alencar AM, Majumdar A, Arold SP, Lutchen KR, Ingenito EP, Suki B (2003) Lung and alveolar wall elastic and hysteretic behavior in rats: effects of in vivo elastase treatment. J Appl Physiol 95(5):1926–1936CrossRefPubMedGoogle Scholar
  17. 17.
    Hamakawa H, Bartolak-Suki E, Parameswaran H, Majumdar A, Lutchen KR, Suki B (2011) Structure-function relations in an elastase-induced mouse model of emphysema. Am J Respir Cell Mol Biol. doi: 10.1165/rcmb.2010-0473OC. 2010-0473OC [pii]PubMedGoogle Scholar
  18. 18.
    Sato S, Bartolak-Suki E, Parameswaran H, Hamakawa H, Suki B (2015) Scale dependence of structure-function relationship in the emphysematous mouse lung. Front Physiol 6:146. doi: 10.3389/fphys.2015.00146 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Dunnill M (1962) Quantitative methods in the study of pulmonary pathology. Thorax 17:320–328CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Weibel ER, Gomez DM (1962) A principle for counting tissue structures on random sections. J Appl Physiol 17:343–348PubMedGoogle Scholar
  21. 21.
    Mazzolo A, Bt R, Gille W (2003) Properties of chord length distributions of nonconvex bodies. J Math Phys 44:6195CrossRefGoogle Scholar
  22. 22.
    Santaló L (1976) Integral geometry and geometric probability. Addison-Wesley Publishing Company, Inc, LondonGoogle Scholar
  23. 23.
    Parameswaran H, Majumdar A, Ito S, Alencar AM, Suki B (2006) Quantitative characterization of airspace enlargement in emphysema. J Appl Physiol 100(1):186–193CrossRefPubMedGoogle Scholar
  24. 24.
    Saetta M, Shiner RJ, Angus GE, Kim WD, Wang NS, King M, Ghezzo H, Cosio MG (1985) Destructive index: a measurement of lung parenchymal destruction in smokers. Am Rev Respir Dis 131:764–769PubMedGoogle Scholar
  25. 25.
    Thurlbeck WM (1967) Internal surface area and other measurements in emphysema. Thorax 22:483–496CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Emami K, Cadman RV, Woodburn JM, Fischer MC, Kadlecek SJ, Zhu J, Pickup S, Guyer RA, Law M, Vahdat V, Friscia ME, Ishii M, Yu J, Gefter WB, Shrager JB, Rizi RR (2008) Early changes of lung function and structure in an elastase model of emphysema–a hyperpolarized 3He MRI study. J Appl Physiol 104:773–786. doi: 10.1152/japplphysiol.00482.2007 CrossRefPubMedGoogle Scholar
  27. 27.
    Gillooly M, Lamb D (1993) Microscopic emphysema in relation to age and smoking habit. Thorax 48:491–495CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Saetta M, Kim WD, Izquierdo JL, Ghezzo H, Cosio MG (1994) Extent of centrilobular and panacinar emphysema in smokers' lungs: pathological and mechanical implications. Eur Respir J 7:664–671CrossRefPubMedGoogle Scholar
  29. 29.
    Ito S, Bartolak-Suki E, Shipley JM, Parameswaran H, Majumdar A, Suki B (2006) Early emphysema in the tight skin and pallid mice: roles of microfibril-associated glycoproteins, collagen, and mechanical forces. Am J Respir Cell Mol Biol 34(6):688–694CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Suki B, Lutchen KR (1992) Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: applications to respiratory mechanics. IEEE Trans Biomed Eng 39(11):1142–1151CrossRefPubMedGoogle Scholar
  31. 31.
    Farre R, Rotger M, Navajas D (1992) Optimized estimation of respiratory impedance by signal averaging in the time domain. J Appl Physiol 73(3):1181–1189PubMedGoogle Scholar
  32. 32.
    Ito S, Ingenito EP, Arold SP, Parameswaran H, Tgavalekos NT, Lutchen KR, Suki B (2004) Tissue heterogeneity in the mouse lung: effects of elastase treatment. J Appl Physiol 97(1):204–212CrossRefPubMedGoogle Scholar
  33. 33.
    Ito S, Lutchen KR, Suki B (2007) Effects of heterogeneities on the partitioning of airway and tissue properties in normal mice. J Appl Physiol 102(3):859–869. doi: 10.1152/japplphysiol.00884.2006. 00884.2006 [pii]CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Northeastern University College of BioengineeringBostonUSA
  2. 2.Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations