Kinase Signaling Networks pp 219-234

Part of the Methods in Molecular Biology book series (MIMB, volume 1636)

Cell-Specific Labeling for Analyzing Bidirectional Signaling by Mass Spectrometry

Protocol

Abstract

Cell-specific proteome labeling enables global proteome-wide analysis of cell signaling in heterotypic co-cultures. Such approaches have provided unique insight in contact-initiated receptor tyrosine kinase signaling, transfer of proteomic material between heterotypic cells, and interactions between normal and oncogenic cells. Here we describe current methods for cell-specific labeling of heterotypic cells with isotopic labeled amino acids (e.g., SILAC and CTAP). We outline the advantages and disadvantages of individual approaches, describe typical experimental scenarios, and discuss where each experimental approach is optimally applied.

Key words

SILAC CTAP Cell-cell signaling Heterocellular Phosphoproteomics PTMs Bidirectional signaling Signal transduction 

References

  1. 1.
    Pawson T, Scott JD (2005) Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci 30:286–290. doi:10.1016/j.tibs.2005.04.013 CrossRefPubMedGoogle Scholar
  2. 2.
    Seet BT, Dikic I, Zhou M-M, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7:473–483. doi:10.1038/nrm1960 CrossRefPubMedGoogle Scholar
  3. 3.
    Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:1646–1653. doi:10.1126/science.1116598 CrossRefPubMedGoogle Scholar
  4. 4.
    Tape CJ (2016) Systems biology analysis of heterocellular signaling. Trends Biotechnol 34(8):627–637. doi:10.1016/j.tibtech.2016.02.016 CrossRefPubMedGoogle Scholar
  5. 5.
    Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schüffler PJ, Grolimund D, Buhmann JM, Brandt S, Varga Z, Wild PJ, Günther D, Bodenmiller B (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11:417–422. doi:10.1038/nmeth.2869 CrossRefPubMedGoogle Scholar
  6. 6.
    Bendall SC, Nolan GP (2012) From single cells to deep phenotypes in cancer. Nat Biotechnol 30(7):639–647. doi:10.1038/nbt.2283 CrossRefPubMedGoogle Scholar
  7. 7.
    Elliott TS, Townsley FM, Bianco A, Ernst RJ, Sachdeva A, sser SJEA, Davis L, Lang K, Pisa R, Greiss S, Lilley KS, Chin JW (2014) Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nat Biotechnol 32:465–472. doi:10.1038/nbt.2860 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rajeeve V, Vendrell I, Wilkes E, Torbett N, Cutillas PR (2014) Cross-species proteomics reveals specific modulation of signaling in cancer and stromal cells by phosphoinositide 3-kinase (PI3K) inhibitors. Mol Cell Proteomics 13:1457–1470. doi:10.1074/mcp.M113.035204 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386CrossRefPubMedGoogle Scholar
  10. 10.
    Ong S-E, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262. doi:10.1038/nchembio736 CrossRefPubMedGoogle Scholar
  11. 11.
    Jorgensen C, Sherman A, Chen GI, Pasculescu A, Poliakov A, Hsiung M, Larsen B, Wilkinson DG, Linding R, Pawson T (2009) Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326:1502–1509. doi:10.1126/science.1176615 CrossRefPubMedGoogle Scholar
  12. 12.
    Rechavi O, Kalman M, Fang Y, Vernitsky H, Jacob-Hirsch J, Foster LJ, Kloog Y, Goldstein I (2010) Trans-SILAC: sorting out the non-cell-autonomous proteome. Nat Methods 7:923–927. doi:10.1038/nmeth.1513 CrossRefPubMedGoogle Scholar
  13. 13.
    Locard-Paulet M, Lim L, Veluscek G, McMahon K, Sinclair J, van Weverwijk A, Worboys JD, Yuan Y, Isacke CM, Jorgensen C (2016) Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Sci Signal 9:ra15–ra15. doi:10.1126/scisignal.aac5820 CrossRefPubMedGoogle Scholar
  14. 14.
    Tape CJ, Ling S, Dimitriadi M, McMahon KM, Worboys JD, Leong HS, Norrie IC, Miller CJ, Poulogiannis G, Lauffenburger DA, Jorgensen C (2016) Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell 165(4):910–920. doi:10.1016/j.cell.2016.03.029 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tape CJ, Worboys JD, Sinclair J, Gourlay R, Vogt J, McMahon KM, Trost M, Lauffenburger DA, Lamont DJ, Jorgensen C (2014) Reproducible automated phosphopeptide enrichment using magnetic TiO2 and Ti-IMAC. Anal Chem 86:10296–10302. doi:10.1021/ac5025842 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Biran A, Perelmutter M, Gal H, Burton DGA, Ovadya Y, Vadai E, Geiger T, Krizhanovsky V (2015) Senescent cells communicate via intercellular protein transfer. Genes Dev 29:791–802. doi:10.1101/gad.259341.115 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tian R, Wang H, Gish GD, Petsalaki E, Pasculescu A, Shi Y, Mollenauer M, Bagshaw RD, Yosef N, Hunter T, Gingras A-C, Weiss A, Pawson T (2015) Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor. Proc Natl Acad Sci 112:E1594–E1603. doi:10.1073/pnas.1503286112 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Anton KA, Sinclair J, Ohoka A, Kajita M, Ishikawa S, Benz PM, Renne T, Balda M, Jorgensen C, Matter K, Fujita Y (2014) PKA-regulated VASP phosphorylation promotes extrusion of transformed cells from the epithelium. J Cell Sci 127:3425–3433. doi:10.1242/jcs.149674 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tape CJ, Norrie IC, Worboys JD, Lim L, Lauffenburger DA, Jorgensen C (2014) Cell-specific labeling enzymes for analysis of cell-cell communication in continuous co-culture. Mol Cell Proteomics 13:1866–1876. doi:10.1074/mcp.O113.037119 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Samuel CE (1993) The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem 268:7603–7606PubMedGoogle Scholar
  21. 21.
    Gauthier NP, Soufi B, Walkowicz WE, Pedicord VA, Mavrakis KJ, Macek B, Gin DY, Sander C, Miller ML (2013) Cell-selective labeling using amino acid precursors for proteomic studies of multicellular environments. Nat Methods 10:768–773. doi:10.1038/nmeth.2529 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. doi:10.1038/nprot.2006.468 CrossRefPubMedGoogle Scholar
  23. 23.
    Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362. doi:10.1038/nmeth.1322 CrossRefPubMedGoogle Scholar
  24. 24.
    Thingholm TE, Jørgensen TJD, Jensen ON, Larsen MR (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1:1929–1935. doi:10.1038/nprot.2006.185 CrossRefPubMedGoogle Scholar
  25. 25.
    Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101:12130–12135. doi:10.1073/pnas.0404720101 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bendall SC, Hughes C, Stewart MH, Doble B, Bhatia M, Lajoie GA (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7:1587–1597. doi:10.1074/mcp.M800113-MCP200 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.The Institute of Cancer ResearchLondonUK
  2. 2.Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Systems Oncology, CRUK Manchester InstituteThe University of ManchesterManchesterUK

Personalised recommendations