Advertisement

Secondary Structure Determination by Means of ATR-FTIR Spectroscopy

  • Batoul Srour
  • Stefan Bruechert
  • Susana L. A. Andrade
  • Petra Hellwig
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1635)

Abstract

Specialized infrared spectroscopic techniques have been developed that allow studying the secondary structure of membrane proteins and the influence of crucial parameters like lipid content and detergent. Here, we focus on an ATR-FTIR spectroscopic study of Af-Amt1 and the influence of LDAO/glycerol on its structural integrity. Our results clearly indicate that infrared spectroscopy can be used to identify the adapted sample conditions.

Key words

Secondary structure analysis Protein-detergent interaction Infrared spectroscopy Ammonium transport 

References

  1. 1.
    Bandekar J (1992) Amide modes and protein conformation. Biochim Biophys Acta 1120:123–143CrossRefPubMedGoogle Scholar
  2. 2.
    Haris PI, Chapman D (1995) The conformational analysis of peptides using Fourier transform IR spectroscopy. Biopolymers 37(4):251–263CrossRefPubMedGoogle Scholar
  3. 3.
    Qi XL, Holt C, McNultyn D, Clarke DT, Brownlow S, Jones GR (1997) Effect of temperature on the secondary structure of beta-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis. Biochem J 324(Pt 1):341–346CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tamm LK, Tatulian SA (1997) Infrared spectroscopy of proteins and peptides in lipid bilayers. Q Rev Biophys 30:365–429CrossRefPubMedGoogle Scholar
  5. 5.
    Arora A, Tamm LK (2001) Biophysical approaches to membrane protein structure determination. Curr Opin Struct Biol 11(5):540–547CrossRefPubMedGoogle Scholar
  6. 6.
    Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767:1073–1101CrossRefPubMedGoogle Scholar
  7. 7.
    Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994) Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. I. Assignments and model compounds. In: Hilderson HJ, Raston GB (eds) Physicochemical methods in the study of biomembranes, Subcellular biochemistry, vol 23. Plenum Press, New York, pp 329–336CrossRefGoogle Scholar
  8. 8.
    Goormaghtigh E, Cabiaux V, Ruysschaertn JM (1994) Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. Subcell Biochem 23:405–450CrossRefPubMedGoogle Scholar
  9. 9.
    Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39:549–559CrossRefPubMedGoogle Scholar
  10. 10.
    Mercer EA, Abbott JGW, Brazier SP, Ramesh B, Haris PI, Srai SKS (1997) Synthetic putative transmembrane region of minimal potassium channel protein (minK) adopts an α-helical conformation in phospholipid membranes. Biochem J 325:475–479CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Goormaghtigh E, Gasper R, Bénard A, Goldsztein A, Raussens V (2009) Protein secondary structure content in solution, films and tissues: redundancy and complementarity of the information content in circular dichroism, transmission and ATR FTIR spectra. Biochim Biophys Acta 1794(9):1332–1343CrossRefPubMedGoogle Scholar
  12. 12.
    Vigano C, Manciu L, Buyse F, Goormaghtigh E, Ruysschaert JM (2000) Attenuated total reflection IR spectroscopy as a tool to investigate the structure, orientation and tertiary structure changes in peptides and membrane proteins. Biopolymers 55(5):373–380CrossRefPubMedGoogle Scholar
  13. 13.
    Bazzi MD, Woody RW (1985) Oriented secondary structure in integral membrane proteins. I. Circular dichroism and infrared spectroscopy of cytochrome oxidase in multilamellar films. Biophys J 48(6):957–966CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rothschild KJ (1992) FTIR difference spectroscopy of bacteriorhodopsin: toward a molecular model. J Bioenerg Biomembr 24(2):147–167CrossRefPubMedGoogle Scholar
  15. 15.
    Andrade SLA, Einsle O (2007) The Amt/Mep/Rh family of ammonium transport proteins. Mol Membr Biol 24:357–365CrossRefPubMedGoogle Scholar
  16. 16.
    Ullmann RT, Andrade SLA, Ullmann GM (2012) Thermodynamics of transport through the ammonium transporter Amt-1 investigated with free energy calculations. J Phys Chem B 116:9690–9703CrossRefPubMedGoogle Scholar
  17. 17.
    Andrade SLA, Dickmanns A, Ficner R, Einsle O (2005) Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc Natl Acad Sci U S A 102(42):14994–14999CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zheng L, Kostrewa D, Berneche S, Winkler F, Li X (2004) The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci U S A 101(49):17090–17095CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Andrade SLA, Dickmanns A, Ficner R, Einsle O (2005) Expression, purification and crystallization of the ammonium transporter Amt-1 from Archaeoglobus fulgidus. Acta Cryst F61:861–863Google Scholar
  20. 20.
    Paul C, Wang J, Wimley WC, Hochstrasser RM, Axelsen PH (2004) Vibrational coupling, isotopic editing, and beta-sheet structure in a membrane-bound polypeptide. J Am Chem Soc 126(18):5843–5850CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Strug I, Utzat C, Cappione A 3rd, Gutierrez S, Amara R, Lento J, Capito F, Skudas R, Chernokalskaya E, Nadler T (2014) Development of a univariate membrane-based mid-infrared method for protein quantitation and total lipid content analysis of biological samples. J Anal Methods Chem 2014:657079CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Viana RB, da Silva ABF, Pimentel AS (2012) Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants. Adv Phys Chem 2012:1–14Google Scholar
  23. 23.
    Das C, Nadler T, Strug I (2015) Detergent analysis in protein samples using mid-infrared (MIR) spectroscopy. Curr Protoc Protein Sci 81:29.12.1–29.12.15CrossRefGoogle Scholar
  24. 24.
    Bardeen CJ (2014) The structure and dynamics of molecular excitons. Annu Rev Phys Chem 65:127–148CrossRefPubMedGoogle Scholar
  25. 25.
    Byler M, Susi H (1986) Examination of the secondary structure of proteins by deconvoluted FTIR spectra. Biopolymers 25:469–487CrossRefPubMedGoogle Scholar
  26. 26.
    Yang W-J, Griffiths P, Byler D, Susi H (1985) Protein conformation by infrared spectroscopy: resolution enhancement by Fourier self deconvolution. Appl Spectrosc 39:282–287CrossRefGoogle Scholar
  27. 27.
    Barth A (2000) Fine-structure enhancement—assessment of a simple method to resolve overlapping bands in spectra. Spectrochim Acta 56:1223–1232CrossRefGoogle Scholar
  28. 28.
    Goormaghtigh E, Ruysschaert JM, Raussens V (2006) Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J 90(8):2946–2957CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Oberg KA, Ruysschaert JM, Goormaghtigh E (2004) The optimization of protein secondary structure determination with infrared and circular dichroism spectra. Eur J Biochem 271(14):2937–2948CrossRefPubMedGoogle Scholar
  30. 30.
    Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120CrossRefPubMedGoogle Scholar
  31. 31.
    Surewicz WK, Mantsch HH, Chapman D (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 389–394(32):32Google Scholar
  32. 32.
    Miller LM, Bourassa MW, Smith RJ (2013) FTIR spectroscopic imaging of protein aggregation in living cells. Biochim Biophys Acta 1828(10):2339–2346CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Batoul Srour
    • 1
  • Stefan Bruechert
    • 2
  • Susana L. A. Andrade
    • 3
    • 4
  • Petra Hellwig
    • 1
  1. 1.Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière ComplexeUniversité de StrasbourgStrasbourgFrance
  2. 2.Institut für Biochemie, Albert-Ludwigs-Universität FreiburgFreiburgGermany
  3. 3.BIOSS Centre for Biological Signalling StudiesFreiburgGermany
  4. 4.Institut für BiochemieAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations