Skip to main content

Microfluidic Capture and Multiplex Immunofluorescence of Circulating Tumor Cells to Identify Cancer of Origin

  • Protocol
  • First Online:
Circulating Tumor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1634))

Abstract

Circulating tumor cells (CTCs) are an important biomarker and their analysis can be considered a form of “liquid biopsy.” The purpose of this book chapter is to describe the use of the 4-channel CMx (cells captured in maximum) microfluidic chip, containing special micropatterns coated with an antibody-conjugated supported lipid bilayer (SLB) on its surface, to capture and isolate CTCs from the blood of cancer patients. Captured CTCs are subsequently released by an air foam to an immunofluorescence (IF) staining panel that enables further analysis, including the identification of the primary cancer source of the CTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29

    Article  PubMed  Google Scholar 

  3. Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS (2014) Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res 20(10):2553–2568

    Article  CAS  PubMed  Google Scholar 

  4. Green BJ, Saberi Safaei T, Mepham A, Labib M, Mohamadi RM, Kelley SO (2015) Beyond the capture of circulating tumor cells: next-generation devices and materials. Angew Chem Int Ed 55(4):1252–1265

    Article  Google Scholar 

  5. Chen J-Y, Tsai W-S, Shao H-J, Wu J-C, Lai J-M, Lu S-H et al (2016) Sensitive and specific biomimetic lipid coated microfluidics to isolate viable circulating tumor cells and microemboli for cancer detection. PLoS One 11(3):e0149633

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tsai W-S, Chen J-S, Shao H-J, Wu J-C, Lai J-M, Lu S-H et al (2016) Circulating tumor cell count correlates with colorectal neoplasm progression and is a prognostic marker for distant metastasis in non-metastatic patients. Sci Rep 6:24517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang M-C, Chang Y-T, Chen J-Y, Jeng Y-M, Yang C-Y, Tien Y-W et al (2016) Clinical significance of circulating tumor microemboli as a prognostic marker in patients with pancreatic ductal adenocarcinoma. Clin Chem 62(3):505–513

    Article  CAS  PubMed  Google Scholar 

  8. Hou J-M, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK et al (2012) Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol 30(5):525–532

    Article  PubMed  Google Scholar 

  9. Tien YW, Kuo HC, Ho BI, Chang MC, Chang YT, Cheng MF et al (2016) A high circulating tumor cell count in portal vein predicts liver metastasis from periampullary or pancreatic cancer: a high portal venous CTC count predicts liver metastases. Medicine (Baltimore) 95(16):e3407

    Article  Google Scholar 

  10. Lu S-H, Tsai W-S, Chang Y-H, Chou T-Y, Pang S-T, Lin P-H et al (2016) Identifying cancer origin using circulating tumor cells. Cancer Biol Ther 17(4):430–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu J-C, Tseng P-Y, Tsai W-S, Liao M-Y, Lu S-H, Frank CW et al (2013) Antibody conjugated supported lipid bilayer for capturing and purification of viable tumor cells in blood for subsequent cell culture. Biomaterials 34(21):5191–5199

    Article  CAS  PubMed  Google Scholar 

  12. Tseng PY, Chang YC (2012) Tethered fibronectin liposomes on supported lipid bilayers as a prepackaged controlled-release platform for cell-based assays. Biomacromolecules 13(8):2254–2262

    Article  CAS  PubMed  Google Scholar 

  13. Huang C-J, Tseng P-Y, Chang Y-C (2010) Effects of extracellular matrix protein functionalized fluid membrane on cell adhesion and matrix remodeling. Biomaterials 31(27):7183–7195

    Article  CAS  PubMed  Google Scholar 

  14. Liao M-Y, Lai J-K, Kuo MY-P, Lu R-M, Lin C-W, Cheng P-C et al (2015) An anti-EpCAM antibody EpAb2-6 for the treatment of colon cancer. Oncotarget 6:24947–24968

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chang YC, Wu HC, Tseng PY (2014) Capture, purification, and release of biological substances using a surface coating. US Patent and Trademark Office

    Google Scholar 

  16. Lai J-M, Shao H-J, Wu J-C, Lu S-H, Chang Y-C (2014) Efficient elusion of viable adhesive cells from a microfluidic system by air foam. Biomicrofluidics 8(5):052001

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lai C-H, Lim SC, Wu L-C, Wang C-F, Tsai W-S, Wu H-C, Chang Y-C (2017) Site-specific antibody modification and immobilization on a microfluidic chip to promote the capture of circulating tumor cells and microemboli. Chem Commun 53(29):4152–4155

    Article  CAS  Google Scholar 

  18. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668

    Article  CAS  PubMed  Google Scholar 

  19. Abe M, Havre PA, Urasaki Y, Ohnuma K, Morimoto C, Dang LH et al (2011) Mechanisms of confluence-dependent expression of CD26 in colon cancer cell lines. BMC Cancer 11(1):1–10

    Article  Google Scholar 

  20. Chan CWM, Wong NA, Liu Y, Bicknell D, Turley H, Hollins L et al (2009) Gastrointestinal differentiation marker cytokeratin 20 is regulated by homeobox gene CDX1. Proc Natl Acad Sci U S A 106(6):1936–1941

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by Genomics Research Center, Academia Sinica, Taiwan and Ministry of Science and Technology of Taiwan under contract 105-0210-01-13-01, MOST-104-2113-M-001-015-MY3, MOST 105-2113-M-037-MY2, AS-105-TP-A04. We thank Katherine Yih Ruey Chen for proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Chih Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lai, CH., Chang, YC. (2017). Microfluidic Capture and Multiplex Immunofluorescence of Circulating Tumor Cells to Identify Cancer of Origin. In: M. Magbanua, M., W. Park, J. (eds) Circulating Tumor Cells. Methods in Molecular Biology, vol 1634. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7144-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7144-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7143-5

  • Online ISBN: 978-1-4939-7144-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics