Computational Prediction of the Immunomodulatory Potential of RNA Sequences

  • Gandharva Nagpal
  • Kumardeep Chaudhary
  • Sandeep Kumar Dhanda
  • Gajendra Pal Singh RaghavaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1632)


Advances in the knowledge of various roles played by non-coding RNAs have stimulated the application of RNA molecules as therapeutics. Among these molecules, miRNA, siRNA, and CRISPR-Cas9 associated gRNA have been identified as the most potent RNA molecule classes with diverse therapeutic applications. One of the major limitations of RNA-based therapeutics is immunotoxicity of RNA molecules as it may induce the innate immune system. In contrast, RNA molecules that are potent immunostimulators are strong candidates for use in vaccine adjuvants. Thus, it is important to understand the immunotoxic or immunostimulatory potential of these RNA molecules. The experimental techniques for determining immunostimulatory potential of siRNAs are time- and resource-consuming. To overcome this limitation, recently our group has developed a web-based server “imRNA” for predicting the immunomodulatory potential of RNA sequences. This server integrates a number of modules that allow users to perform various tasks including (1) generation of RNA analogs with reduced immunotoxicity, (2) identification of highly immunostimulatory regions in RNA sequence, and (3) virtual screening. This server may also assist users in the identification of minimum mutations required in a given RNA sequence to minimize its immunomodulatory potential that is required for designing RNA-based therapeutics. Besides, the server can be used for designing RNA-based vaccine adjuvants as it may assist users in the identification of mutations required for increasing immunomodulatory potential of a given RNA sequence. In summary, this chapter describes major applications of the “imRNA” server in designing RNA-based therapeutics and vaccine adjuvants (

Key words

Immunomodulatory RNA RNA immunotoxicity imRNA Prediction TLR 7 Adjuvant Machine learning SVM 


  1. 1.
    Lam JKW, Chow MYT, Zhang Y, Leung SWS (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4:e252. doi: 10.1038/mtna.2015.23 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Goodchild J (2004) Oligonucleotide therapeutics: 25 years agrowing. Curr Opin Mol Ther 6:120–128PubMedGoogle Scholar
  3. 3.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. doi: 10.1016/j.cell.2014.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Li H, Lee T, Dziubla T et al (2015) RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 10:631–655. doi: 10.1016/j.nantod.2015.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Khisamutdinov EF, Li H, Jasinski DL et al (2014) Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res 42:9996–10004. doi: 10.1093/nar/gku516 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Heidenreich R, Jasny E, Kowalczyk A et al (2015) A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. Int J Cancer 137:372–384. doi: 10.1002/ijc.29402 CrossRefPubMedGoogle Scholar
  7. 7.
    Gantier MP, Tong S, Behlke MA et al (2010) Rational design of immunostimulatory siRNAs. Mol Ther 18:785–795. doi: 10.1038/mt.2010.4 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Goodchild A, Nopper N, King A et al (2009) Sequence determinants of innate immune activation by short interfering RNAs. BMC Immunol 10:40. doi: 10.1186/1471-2172-10-40 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Olejniczak M, Galka-Marciniak P, Polak K et al (2012) RNAimmuno: a database of the nonspecific immunological effects of RNA interference and microRNA reagents. RNA 18:930–935. doi: 10.1261/rna.025627.110 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chaudhary K, Nagpal G, Dhanda SK, Raghava GPS (2016) Prediction of Immunomodulatory potential of an RNA sequence for designing non-toxic siRNAs and RNA-based vaccine adjuvants. Sci Rep 6:20678. doi: 10.1038/srep20678 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schlee M, Hornung V, Hartmann G (2006) siRNA and isRNA: two edges of one sword. Mol Ther 14:463–470. doi: 10.1016/j.ymthe.2006.06.001 CrossRefPubMedGoogle Scholar
  12. 12.
    Ahmed F, Raghava GPS (2011) Designing of highly effective complementary and mismatch siRNAs for silencing a gene. PLoS One 6:e23443. doi: 10.1371/journal.pone.0023443 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hornung V, Guenthner-Biller M, Bourquin C et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270. doi: 10.1038/nm1191 CrossRefPubMedGoogle Scholar
  14. 14.
    Lee DU, Huang W, Rittenhouse KD, Jessen B (2012) Retina expression and cross-species validation of gene silencing by PF-655, a small interfering RNA against RTP801 for the treatment of ocular disease. J Ocul Pharmacol Ther 28:222–230. doi: 10.1089/jop.2011.0116 CrossRefPubMedGoogle Scholar
  15. 15.
    Lorenz R, Bernhart SH, Höner Zu Siederdissen C et al (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6:26. doi: 10.1186/1748-7188-6-26 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Darty K, Denise A, Ponty Y (2009) VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25:1974–1975. doi: 10.1093/bioinformatics/btp250 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vens C, Rosso M-N, Danchin EGJ (2011) Identifying discriminative classification-based motifs in biological sequences. Bioinformatics 27:1231–1238. doi: 10.1093/bioinformatics/btr110 CrossRefPubMedGoogle Scholar
  18. 18.
    Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738. doi: 10.1038/35099560 CrossRefPubMedGoogle Scholar
  19. 19.
    Kato H, Takeuchi O, Sato S et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105. doi: 10.1038/nature04734 CrossRefPubMedGoogle Scholar
  20. 20.
    Hornung V, Ellegast J, Kim S et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997. doi: 10.1126/science.1132505 CrossRefPubMedGoogle Scholar
  21. 21.
    Nallagatla SR, Hwang J, Toroney R et al (2007) 5′-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 318:1455–1458. doi: 10.1126/science.1147347 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Gandharva Nagpal
    • 1
  • Kumardeep Chaudhary
    • 1
  • Sandeep Kumar Dhanda
    • 1
  • Gajendra Pal Singh Raghava
    • 1
    Email author
  1. 1.Bioinformatics CentreInstitute of Microbial TechnologyChandigarhIndia

Personalised recommendations