Skip to main content

Chitosan Nanoparticles for miRNA Delivery

  • Protocol
  • First Online:
RNA Nanostructures

Abstract

RNA interference techniques represent a promising strategy for therapeutic applications. In addition to small interfering RNA-based approaches, which have been widely studied and translated into clinical investigations, microRNA-based approaches are attractive owing to their “one hit, multiple targets” concept. To overcome challenges with in vivo delivery of microRNAs related to stability, cellular uptake, and specific delivery, our group has developed and characterized chitosan nanoparticles for nucleotide delivery. This platform allows for robust target modulation and antitumor activity following intravenous administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bobbin ML, Rossi JJ (2016) RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol 56:103–122

    Article  CAS  PubMed  Google Scholar 

  2. SY W, Lopez-Berestein G, Calin GA, Sood AK (2014) RNAi therapies: drugging the undruggable. Sci Transl Med 6(240):240ps247–240ps247

    Google Scholar 

  3. Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239

    Article  CAS  PubMed  Google Scholar 

  4. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8(1):23–36. doi:10.1038/nrm2085

    Article  CAS  PubMed  Google Scholar 

  6. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349

    Article  CAS  PubMed  Google Scholar 

  7. Tijsterman M, Plasterk RH (2004) Dicers at RISC: the mechanism of RNAi. Cell 117(1):1–3

    Article  CAS  PubMed  Google Scholar 

  8. Lam JK, Chow MY, Zhang Y, Leung SW (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4(9):e252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ledford H (2015) Cancer: the Ras renaissance. Nature 520(7547):278–280. doi:10.1038/520278a

    Article  CAS  PubMed  Google Scholar 

  10. Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW (2014) Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 14(4):248–262. doi:10.1038/nrc3690

    Article  CAS  PubMed  Google Scholar 

  11. Ramos P, Bentires-Alj M (2015) Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene 34(28):3617–3626. doi:10.1038/onc.2014.314

    Article  CAS  PubMed  Google Scholar 

  12. Gharpure KM, SY W, Li C, Lopez-Berestein G, Sood AK (2015) Nanotechnology: future of oncotherapy. Clin Cancer Res 21(14):3121–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G (2015) Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 87:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792

    Article  CAS  Google Scholar 

  15. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  CAS  PubMed  Google Scholar 

  16. Choi C, Nam J-P, Nah J-W (2016) Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem 33:1–10

    Article  CAS  Google Scholar 

  17. Ragelle H, Vandermeulen G, Préat V (2013) Chitosan-based siRNA delivery systems. J Control Release 172(1):207–218

    Article  CAS  PubMed  Google Scholar 

  18. Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, Nam EJ, Mora EM, Stone RL, Lu C (2010) Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 16(15):3910–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu C, Han HD, Mangala LS, Ali-Fehmi R, Newton CS, Ozbun L, Armaiz-Pena GN, Hu W, Stone RL, Munkarah A (2010) Regulation of tumor angiogenesis by EZH2. Cancer Cell 18(2):185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim H-S, Han HD, Armaiz-Pena GN, Stone RL, Nam EJ, Lee J-W, Shahzad MM, Nick AM, Lee SJ, Roh J-W (2011) Functional roles of Src and Fgr in ovarian carcinoma. Clin Cancer Res 17(7):1713–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steg AD, Katre AA, Goodman B, Han H-D, Nick AM, Stone RL, Coleman RL, Alvarez RD, Lopez-Berestein G, Sood AK (2011) Targeting the notch ligand JAGGED1 in both tumor cells and stroma in ovarian cancer. Clin Cancer Res 17(17):5674–5685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu W, Lu C, Dong HH, Huang J, D-y S, Stone RL, Nick AM, Shahzad MM, Mora E, Jennings NB (2011) Biological roles of the delta family notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Res 71(18):6030–6039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hussein YR, Sood AK, Bandyopadhyay S, Albashiti B, Semaan A, Nahleh Z, Roh J, Han HD, Lopez-Berestein G, Ali-Fehmi R (2012) Clinical and biological relevance of enhancer of zeste homolog 2 in triple-negative breast cancer. Hum Pathol 43(10):1638–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ziebarth AJ, Nowsheen S, Steg AD, Shah MM, Katre AA, Dobbin ZC, Han H-D, Lopez-Berestein G, Sood AK, Conner M (2013) Endoglin (CD105) contributes to platinum resistance and is a target for tumor-specific therapy in epithelial ovarian cancer. Clin Cancer Res 19(1):170–182

    Article  CAS  PubMed  Google Scholar 

  25. Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang T-C, Xie X-J, He L, Mangala LS, Lopez-Berestein G (2014) miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 512(7515):431–435

    Article  CAS  PubMed  Google Scholar 

  26. Aslan B, Monroig P, Hsu MC, Pena GA, Rodriguez-Aguayo C, Gonzalez-Villasana V, Rupaimoole R, Nagaraja AS, Mangala S, Han HD, Yuca E, SY W, Ivan C, Moss TJ, Ram PT, Wang H, Gol-Chambers A, Ozkayar O, Kanlikilicer P, Fuentes-Mattei E, Kahraman N, Pradeep S, Ozpolat B, Tucker S, Hung MC, Baggerly K, Bartholomeusz G, Calin G, Sood AK, Lopez-Berestein G (2015) The ZNF304-integrin axis protects against anoikis in cancer. Nat Commun 6:7351. doi:10.1038/ncomms8351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C, Wu S, Han H-D, Shah MY, Rodriguez-Aguayo C (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4:2427

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gaur S, Wen Y, Song JH, Parikh NU, Mangala LS, Blessing AM, Ivan C, Wu SY, Varkaris A, Shi Y (2015) Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget 6(30):29161

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Portions of this work were supported by the NIH (CA016672, CA109298, P50 CA083639, P50 CA098258, UH3 TR000943), the Ovarian Cancer Research Fund, Inc. (Program Project Development Grant), the Blanton-Davis Ovarian Cancer Research Program, the RGK Foundation, and the Gilder Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Denizli, M. et al. (2017). Chitosan Nanoparticles for miRNA Delivery. In: Bindewald, E., Shapiro, B. (eds) RNA Nanostructures . Methods in Molecular Biology, vol 1632. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7138-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7138-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7137-4

  • Online ISBN: 978-1-4939-7138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics