Skip to main content

SELEX-Seq: A Method to Determine DNA Binding Specificities of Plant Transcription Factors

  • Protocol
  • First Online:
Plant Gene Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1629))

Abstract

Systematic evolution of ligands by exponential enrichment (SELEX) is a method that allows isolating specific nucleotide sequences that interact with a DNA binding protein of choice. By using a transcription factor (TF) and a randomized pool of double-stranded DNA, this technique can be used to characterize TF DNA binding specificities and affinities. The method is based on protein-DNA complex immunoprecipitation with protein-specific antibodies and subsequent DNA selection and amplification. Application of massively parallel sequencing (-seq) at each cycle of SELEX allows determining the relative affinities to any DNA sequence for any transcription factor or TF complex. The resulting TF DNA binding motifs can be used to predict potential DNA binding sites in genomes and thereby direct target genes of TFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi:10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  2. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. doi:10.1126/science.2200121

    Article  CAS  PubMed  Google Scholar 

  3. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403. doi:10.1016/j.bioeng.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  4. Djordjevic M (2007) SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways. Biomol Eng 24(2):179–189. doi:10.1016/j.bioeng.2007.03.001

    Article  CAS  PubMed  Google Scholar 

  5. Oliphant AR, Brandl CJ, Struhl K (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol 9(7):2944–2949. doi:10.1128/MCB.9.7.2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jolma A, Kivioja T, Toivonen J, Cheng L, Wei G, Enge M, Taipale M, Vaquerizas JM, Yan J, Sillanpaa MJ, Bonke M, Palin K, Talukder S, Hughes TR, Luscombe NM, Ukkonen E, Taipale J (2010) Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 20(6):861–873. doi:10.1101/gr.100552.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, Morgunova E, Enge M, Taipale M, Wei G, Palin K, Vaquerizas JM, Vincentelli R, Luscombe NM, Hughes TR, Lemaire P, Ukkonen E, Kivioja T, Taipale J (2013) DNA-binding specificities of human transcription factors. Cell 152(1-2):327–339. doi:10.1016/j.cell.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  8. Slattery M, Riley T, Liu P, Abe N, Gomez-Alcala P, Dror I, Zhou T, Rohs R, Honig B, Bussemaker HJ, Mann RS (2011) Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147(6):1270–1282. doi:10.1016/j.cell.2011.10.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crocker J, Abe N, Rinaldi L, McGregor AP, Frankel N, Wang S, Alsawadi A, Valenti P, Plaza S, Payre F, Mann RS, Stern DL (2015) Low affinity binding site clusters confer hox specificity and regulatory robustness. Cell 160(1-2):191–203. doi:10.1016/j.cell.2014.11.041

    Article  CAS  PubMed  Google Scholar 

  10. Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, Enge M, Kivioja T, Morgunova E, Taipale J (2015) DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527(7578):384–388. doi:10.1038/nature15518

    Article  CAS  PubMed  Google Scholar 

  11. Liang X, Nazarenus TJ, Stone JM (2008) Identification of a consensus DNA-binding site for the Arabidopsis thaliana SBP domain transcription factor, AtSPL14, and binding kinetics by surface plasmon resonance. Biochemistry 47(12):3645–3653. doi:10.1021/bi701431y

    Article  CAS  PubMed  Google Scholar 

  12. Xie Z, Lee E, Lucas JR, Morohashi K, Li D, Murray JA, Sack FD, Grotewold E (2010) Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes. Plant Cell 22(7):2306–2321. doi:10.1105/tpc.110.074609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moyroud E, Minguet EG, Ott F, Yant L, Pose D, Monniaux M, Blanchet S, Bastien O, Thevenon E, Weigel D, Schmid M, Parcy F (2011) Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Plant Cell 23(4):1293–1306. doi:10.1105/tpc.111.083329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Viola IL, Uberti Manassero NG, Ripoll R, Gonzalez DH (2011) The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain. Biochem J 435(1):143–155. doi:10.1042/BJ20101019

    Article  CAS  PubMed  Google Scholar 

  15. O'Malley RC, Huang SS, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165(5):1280–1292. doi:10.1016/j.cell.2016.04.038

    Article  PubMed  PubMed Central  Google Scholar 

  16. Smaczniak C, Immink RG, Muino JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci U S A 109(5):1560–1565. doi:10.1073/pnas.1112871109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18(19):5370–5379. doi:10.1093/emboj/18.19.5370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci U S A 93(10):4793–4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sambrook J, Russell DW, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Acknowledgments

We would like to thank Arttu Jolma and Jussi Taipale for providing barcoded ssDNA libraries and sharing details on the dsDNA library preparation and amplification. This work was supported by an NWO-VIDI grant to KK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Kaufmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Smaczniak, C., Angenent, G.C., Kaufmann, K. (2017). SELEX-Seq: A Method to Determine DNA Binding Specificities of Plant Transcription Factors. In: Kaufmann, K., Mueller-Roeber, B. (eds) Plant Gene Regulatory Networks. Methods in Molecular Biology, vol 1629. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7125-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7125-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7124-4

  • Online ISBN: 978-1-4939-7125-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics